
Development of an Interactive
Annunciator Panel

Bachelorarbeit von
Lukas Klass
IRS-18-S-052

Betreuer:
Prof. Dr. rer. nat. Alfred Krabbe

Dr. rer. nat. Holger Jakob

Institut für Raumfahrtsysteme, Universität Stuttgart
Mai 2018

Erklärungen

Hiermit versichere ich, Klass, Lukas, dass ich diese Bachelorarbeit selbstständig mit Unterstützung der
Betreuer angefertigt und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe. Die
Arbeit oder wesentliche Bestandteile davon sind weder an dieser noch an einer anderen
Bildungseinrichtung bereits zur Erlangung eines Abschlusses eingereicht worden.

Ich erkläre weiterhin, bei der Erstellung der Arbeit die einschlägigen Bestimmungen zum Urheberschutz
fremder Beiträge entsprechend den Regeln guter wissenschaftlicher Praxis1 eingehalten zu haben. Soweit
meine Arbeit fremde Beiträge (z.B. Bilder, Zeichnungen, Textpassagen etc.) enthält, habe ich diese Beiträge
als solche gekennzeichnet (Zitat, Quellenangabe) und eventuell erforderlich gewordene Zustimmungen
der Urheber zur Nutzung dieser Beiträge in meiner Arbeit eingeholt. Mir ist bekannt, dass ich im Falle einer
schuldhaften Verletzung dieser Pflichten die daraus entstehenden Konsequenzen zu tragen habe.

 Palmdale, CA, 02.05.2018

 ..
Ort, Datum, Unterschrift

Hiermit erkläre ich mich damit einverstanden, dass meine Bachelorarbeit zum Thema:

Development of an interactive Annunciator Panel for the SOFIA Telescope

in der Institutsbibliothek des Instituts für Raumfahrtsysteme ohne Sperrfrist öffentlich zugänglich
aufbewahrt und die Arbeit auf der Institutswebseite sowie im Online-Katalog der Universitätsbibliothek
erfasst wird. Letzteres bedeutet eine dauerhafte, weltweite Sichtbarkeit der bibliographischen Daten der
Arbeit (Titel, Autor, Erscheinungsjahr, etc.).

Nach Abschluss der Arbeit werde ich zu diesem Zweck meinen Betreuern neben dem Prüfexemplar eine
weitere gedruckte sowie eine digitale Fassung übergeben.

Der Universität Stuttgart übertrage ich das Eigentum an diesen zusätzlichen Fassungen und räume dem
Institut für Raumfahrtsysteme an dieser Arbeit und an den im Rahmen dieser Arbeit von mir erzeugten
Arbeitsergebnissen ein kostenloses, zeitlich und örtlich unbeschränktes, einfaches Nutzungsrecht für
Zwecke der Forschung und der Lehre ein. Falls in Zusammenhang mit der Arbeit
Nutzungsrechtsvereinbarungen des Instituts mit Dritten bestehen, gelten diese Vereinbarungen auch für
die im Rahmen dieser Arbeit entstandenen Arbeitsergebnisse.

 Palmdale, CA, 02.05.2018

 ..
Ort, Datum, Unterschrift

1 Nachzulesen in den DFG-Empfehlungen zur „Sicherung guter wissenschaftlicher Praxis“ bzw. in der Satzung der Universität Stuttgart zur

„Sicherung der Integrität wissenschaftlicher Praxis und zum Umgang mit Fehlverhalten in der Wissenschaft“

Preface

First of all, I thank my mentor Prof. Dr. rer. nat. Alfred Krabbe at the University of
Stuttgart as well as my supervisor Dr. rer. nat. Holger Jakob for their friendly and
helpful support during my bachelor thesis.

Furthermore I thank Dipl.-Inf. Oliver Rohe sincerely for his support in the C pro-
gramming language, setting up the Make�le and his SD-Card bootloaders. Without
his Make�le, the compiling process would have been much more complicated.

For letting me be part of the awesome DSI team, I would like to thank Michael Beck,
Christian Fischer, Nadine Fischer, Michael Huetwohl, Yannick Lammen, Sarah Peter,
Andreas Reinacher, Andreas Siggelkow, Alexander Steiner, Rainer Strecker, Oliver
Zeile and the rest of the DSI team. I had a great time both at work and in our free
time. I really enjoyed goind on adventures with you.

In addition, I thank my parents and family for letting me go to Palmdale and for their
great support.

I thank my girlfriend Anja Mrzyglod for coming with me to the US and for her great
support. I really enjoyed traveling through California with her. I wouldn't have done
it without her.

The German Academic Exchange Service (DAAD) supported me with a PROMOS
scholarship, for which I would like to thank for. It helped me to �nance this amazing
experience in the United States of America.

Finally, I thank Michael Stock and his company Stock Flight Systems for their support
during the hardware analysis and the troubleshooting.

i

Contents

Preface i

Abstract v

Zusammenfassung vii

Acronyms ix

1 Introduction 1
1.1 SOFIA . 2
1.2 Telescope Assembly . 4
1.3 Telescope Optics . 5
1.4 Telescope Software and Electronics . 6
1.5 Annunciator Panel . 8

2 System Analysis 11
2.1 Hardware . 11

2.1.1 Display and GPU . 11
2.1.2 Spartan-3 FPGA . 12
2.1.3 Periphery . 14

2.2 Software . 15
2.2.1 MicroBlaze Bootloaders . 16
2.2.2 CAN Application . 17
2.2.3 Display Application . 18

3 Preparatory Work 19
3.1 Software Design Process . 19
3.2 Source Code Repository . 20
3.3 MicroBlaze Toolchain . 20
3.4 Make�le & Linker Script . 21
3.5 SD-Card Bootloader . 21

4 Implementation & Findings 23
4.1 State Model of the new Software . 24
4.2 Annunciation Colors . 25
4.3 Acknowledge & Refresh . 25
4.4 UTC Clock . 25
4.5 Housekeeping Page . 26

iii

Contents

4.6 Error Handling . 27
4.7 Continuous Built-In Test . 29
4.8 Built-In Test on Demand . 30
4.9 Task Scheduler . 31
4.10 Findings . 34

4.10.1 System Performance . 34
4.10.2 Boot Timing Issues . 36
4.10.3 CAN Bus Problems . 37

5 Conclusion 39
5.1 Future Updates & Upgrades . 39
5.2 Alternative Systems . 40

Glossary 41

Bibliography 43

iv

Abstract

Observing with SOFIA requires a quick and reliable way to make its operators aware
of the current telescope state, for what the Annunciator Panel (ANPA) is the central
annunciation system. So far, the panel only served as a passive system without any
possibility for user interaction. Furthermore, it didn't o�er any indication of its own
failure state.
For these reasons, the ANPA's capabilities are extended to an interactive and a more
reliable system in the scope of this thesis. This includes the capability to acknowledge
new alerts and to request a refresh of the display from the Master Control Processor
(MCP). Test mechanisms for error detection are developed, which check the system's
health state both continuously and on demand. As some housekeeping parameters are
of special importance during troubleshooting and maintenance on the ground by the
DSI personnel, two housekeeping pages are included in the new software. Addition-
ally, performance issues of the current system are investigated and di�erent solutions
developed.
So far, only insu�cient hardware and software documentation existed for the Annunci-
ator Panel. However, the manufacturer of the ANPA, Stock Flight Systems, delivered
the complete development environment for the software development. Based on this,
the functionality of hardware and software is analyzed and documented.
As the Annunciator Panel is a mission critical telescope system on the aircraft, the
DSI development process is applied to ensure the airworthiness of the new software.
In this context, the requirements for the system are identi�ed and the design of the
new functionalities is documented in detail. Subsequently, the new software is tested in
cooperation with NASA Quality Assurance (QA), using a dedicated testing procedure,
in order to verify the airworthiness of the new system.

v

Zusammenfassung

E�zientes Beobachten mit SOFIA setzt eine zuverlässige Anzeige des Teleskop-Status
voraus, wofür das Annunciator Panel (ANPA) das zentrale Anzeigeelement darstellt.
Bisher diente das Panel lediglich als passives Anzeigesystem ohne jegliche Interaktions-
möglichkeit. Darüber hinaus bot es keinerlei Fehlerindikation, die einen Rückschluss
auf korrektes oder fehlerhaftes Verhalten ermöglichte.
Aus diesen Gründen wird im Rahmen dieser Bachelorarbeit das ANPA zu einem in-
teraktiven und zuverlässigerem System erweitert. Dies beinhaltet die Möglichkeit neue
Statusmeldungen zu bestätigen und eine Aktualisierung des Bildschirminhaltes vom
MCP anzufordern. Ebenfalls werden Testmechanismen zur Fehlererkennung entwick-
elt, die sowohl kontinuierlich als auch auf Abfrage die Funktionsbereitschaft des Sys-
tems prüfen. Da während des Betriebs und der Wartung des Teleskops am Boden durch
das DSI Personal einige Sensormesswerte wichtig sind, werden zwei Übersichtsseiten
zur Darstellung dieser Werte in der neuen Software vorgesehen. Zusätzlich wird die
Leistungsfähigkeit des Systems untersucht und verschiedene Ansätze zur Verbesserung
entwickelt.
Bisher existierte für das Annunciator Panel nur unzureichende Hardware und Software
Dokumentation. Vom Hersteller wurde jedoch die gesamte Entwicklungsumgebung
für die Entwicklung der Software geliefert. Anhand dieser wird zunächst die Funk-
tionsweise der Hardware und bisherigen Software nachvollzogen und dokumentiert.
Basierend auf diesem Wissen können anschlieÿend die neuen Anforderungen mithilfe
einer simulierten Flugzeugumgebung im HiL-Labor implementiert werden.
Da es sich beim Annunciator Panel um ein missionskritisches Teleskopsystem im Flug-
zeug handelt, wird für die Entwicklung der neuen Software der DSI Entwicklungsprozess
angewendet. In diesem Rahmen werden zuerst die Anforderungen an das System her-
ausgearbeitet und das Design der neuen Funktionalitäten genau dokumentiert. An-
schlieÿend wird das neue System gemeinsam mit der NASA Qualitätssicherung mithilfe
einer Testprozedur geprüft, um die Betriebstauglichkeit für SOFIA nachzuweisen.

vii

Acronyms

ANPA Annunciator Panel
ATCU Attitude Control Unit

BIT Built-In Test
BRAM Block Random Access Memory

CAN Controller Area Network
ConOps Concept of Operations
CPU Central Processing Unit
CVS Concurrent Version System

DCC Diagnostics and Control Computer
DLR Deutsches Zentrum für Luft- und Raumfahrt
DPRAM Dual-Port Random Access Memory
DSI Deutsches SOFIA Institut

FCM Focus Center Mechanism
FFI Fine Field Imager
FPI+ Focal Plane Imager Plus
FPU Floating Point Unit

GCC GNU Compiler Collection
GNU GNU's Not Unix
GPU Graphics Processing Unit
GUI Graphical User Interface

IRIG Inter Range Instrumentation Group Timecode
ISR Interrupt Service Routine

KAO Kuiper Airborne Observatory

LMB Local Memory Bus

MCCS Mission Controls and Communications System
MCP Master Control Processor

ix

Acronyms

NASA National Aeronautics and Space Agency
NECS Network Extended Control System

PDU Power Distribution Unit
PLB Processor Local Bus
PM Primary Mirror
PWCU Pressure Window Control Unit
PWM Pulse Width Modulation

RAM Random Access Memory
RDACU Rotation Drive Assembly Control Unit

SD-Card Secure Digital Memory Card
SI Science Instrument
SM Secondary Mirror
SMA Secondary Mirror Assembly
SMCU Secondary Mirror Control Unit
SMM Secondary Mirror Mechanism
SMO SOFIA Science Mission Operations
SOFIA Stratospheric Observatory for Infrared Astronomy
SRAM Static Random Access Memory

TA Telescope Assembly
TASCU Telescope Assembly Servo Control Unit
TCM Tilt Chop Mechanism
TM Tertiary Mirror
TO Telescope Operator
TRC Tracker

UPS Uninterruptable Power Supply
USRA Universities Space Research Association
UTC Coordinated Universal Time

V&V Veri�cation & Validation
VIS Vibration Isolation System

WFI Wide Field Imager
Wine Wine Is Not an Emulator

XCL Xilinx Cache Link

x

1 Introduction

The Stratospheric Observatory for Infrared Astronomy (SOFIA) is an airplane based
observatory for the Mid and Far Infrared range and the successor of the now shut
down Kuiper Airborne Observatory (KAO). As a result of the success of KAO like
the discovery of the Uranus rings, scientists decided in 1985 to build an all new and
more advanced airborne observatory. SOFIA o�ers an improved angular and spectral
resolution and a better sensitivity compared to the KAO [1].
The development of SOFIA started in late 1996 with the �rst contracts between the
National Aeronautics and Space Agency (NASA) and the Deutsches Zentrum für Luft-
und Raumfahrt (DLR) [15]. SOFIA had its �rst �ight in April 2007 and its First Light
in May 2010. The Full Operational Capabilities were reached in 2014. As the plane is
designed for an operational 20 years, SOFIA can be active until 2034. During about
120 �ights [19] of up to ten hours every year, scientists now observe the sky over North
America, the Paci�c and the Southern Hemisphere.

Figure 1.1: Stratospheric Observatory for Infrared Astronomy in �ight with the Cavity
Door open [21]

1

1 Introduction

1.1 SOFIA

SOFIA is a joint research project of NASA and DLR. It consists of a modi�ed Boeing
747 Special Performance, which carries a 2.7 m diameter Infrared telescope in the rear
fuselage.
Compared to a 747-100, the Boeing 747 SP is shorter and lighter, but o�ers the same
wing size. To maintain the �ight stability, the empennage has been increased. By
virtue of these changes, the airplane is now able to carry more payload or to �y longer
than a commercial 747.
In order to allow the telescope a clear view of the sky, several modi�cations have been
carried out on the plane. An open cavity in the aft contains the telescope itself. It
is separated from the passenger area and carried by a pressure bulkhead as shown in
Figure 1.2. To protect the telescope from any environmental e�ects like condensation
during descent, a shutter door was installed. The door is only opened at night at the
operation height of 37000 - 45000 feet [19] or during maintenance.
The Stratospheric Observatory for Infrared Astronomy is �nancially divided between
the two partners by 80 % (NASA) and 20 % (DLR) [3]. Universities Space Research
Association (USRA) has been contracted by NASA to maintain the plane and provide
the SOFIA Science Mission Operations (SMO). The task of the DLR was to develop,
build and now to maintain the Telescope Assembly. In order to ful�ll these tasks, the
Deutsches SOFIA Institut (DSI) was founded in 2004 at the University of Stuttgart.
As SOFIA is �nanced by public funds, visitors like science teachers are welcome to
experience a �ight and the accompanying science.

Figure 1.2: Sectional view of SOFIA
The telescope cavity in the back is separated by a pressure bulkhead
from the cabin where the Telescope Operator (TO)s and scientists oper-
ate SOFIA.

At the operation altitude, SOFIA �ys above 99 % of the atmospheres water vapor
which absorbs some ranges of the infrared spectrum [1]. Because of this, SOFIA is able
to observe a wider spectrum of the Infrared radiation compared to ground stationed
observatories like the ones on Mauna Kea, as shown in Figure 1.3.

2

1.1 SOFIA

Although satellite observatories like Herschel, Hubble or James Webb Space Telescope
are not in�uenced by any disturbances, they are di�cult to maintain and o�er a very
limited life time [21]. Airborne observatories like SOFIA in contrast o�er the possibility
to change the science instruments and to maintain the telescope easily and therefore
serve as a versatile scienti�c platform. Upgrades can be carried out quickly and much
cheaper compared to satellite based telescopes.
The main objectives of SOFIA are [3]:

� star birth and death

� formation of new solar systems

� identi�cation of complex molecules in space

� planets, comets and asteroids in our solar system

� nebulae and dust in galaxies (or, ecosystems of galaxies)

� black holes at the center of galaxies

Therefore, the scienti�c community can apply for observations with SOFIA which may
be granted by a committee in a peer review [1].
Currently, the three American instruments FORCAST, HAWC+, EXES and the two
German instruments FIFI-LS and GREAT with di�erent wavelength sensitivity and
spectral resolution are available for the observations. Additionally, the Focal Plane
Imager Plus (FPI+) shown in Figure 1.4 can be used for further observations like
occultations from remote locations, as only brightness measurements are relevant. [16]

Figure 1.3: Comparison between Airborne and Ground Based Observatories. Some
parts of the Infrared spectrum are invisible on the ground, because of the
atmospheric water vapor absorption. [3]

3

1 Introduction

1.2 Telescope Assembly

The Telescope Assembly has been developed by a consortium led by the companies
MAN and Kayser Threde. It is divided into the telescope cavity and the cabin side,
separated by a pressure bulkhead.
On the cabin side of the bulkhead, the Vibration Isolation System (VIS) uncouples
the Telescope Assembly (TA) from aircraft vibrations and locks it during take o� and
landing. This side of the Telescope Assembly is built up in di�erent layers, where the
outer cradle is formed by the Coarse Drive. It uses four electric motors to elevate the
whole Telescope Assembly between about 20°and 60°.
One layer further inside is the Fine Drive which is used for smaller rotations in all
three Degrees of Freedom. Permanent magnetic rotors and static electromagnetic coils
enable precise movements of the telescope.
The inner cradle of the cabin sided TA is the spheric Hydrostatic Oil Bearing in the
center of the bulkhead. It contains an oil �lm of 50 µm thickness and 50 bar pres-
sure. This allows an easy and smooth rotation of the TA around all three axes and
additionally creates a pressure boundary between the cabin side and the cavity side of
the telescope. A set of Spherical Sensors provide information about the position of the
telescope.
In order to operate the telescope correctly, cabin side and cavity side of the TA need
to be in balance. This can be done by adding counterweight plates on the cabin side as
shown in Figure 1.4. Additionally, the Balancer Drives can be used for �ne-tuning the
telescope balance in all three dimensions during the �ight, as the Science Instruments
(SIs) lose weight due to coolant evaporation.
The movements of the telescope in relation to a prede�ned inertial coordinate system
are measured by three gyroscopes. This displacement can be expressed as a quater-
nion, which describes the rotation from one coordinate system to another. The inertial
coordinate system in turn can be referenced by a constant quaternion to the Equa-
torial Reference System based on the earth's equatorial plane. This enables a precise
orientation of the telescope within inertial space and therefore an exact pointing on
the target.
The Secondary Mirror Assembly (SMA) in front of the Primary Mirror (PM) is the most
integrated system of the TA and contains the Focus Center Mechanism (FCM) and Tilt
Chop Mechanism (TCM). Both mechanisms are indispensable for SOFIA's imaging
goals. As the cavity side of the telescope undergoes temperature di�erences from
ground to stratospheric temperatures, thermal expansion and shrinkage of structural
elements cause the Secondary Mirror (SM) to move out of focus. Therefore, the FCM
is able to move the SM in three translational and two rotational axes.
The TCM allows a fast and precise tilt of the SM in any direction without inducing
moments on the TA. This is used for chopping, where the SM is tilted to a speci�ed
position in order to observe a di�erent region in the sky. The background of the
neighbor region can then be used for subtracting the background radiation from the
target.

4

1.3 Telescope Optics

1.3 Telescope Optics

SOFIA's telescope is a Cassegrain Telescope in a Nasmyth con�guration. A Cassegrain
Telescope consists of a parabolic Primary Mirror (PM) with a very short focal length.
Its focus is elongated by an opposing hyperbolic Secondary Mirror (SM). The classical
Cassegrain Telescope has an opening in the PM for the secondary mirror beam. In this
case, the Science Instruments would be mounted behind the Primary Mirror.
As there is only limited space within an aircraft, SOFIA's telescope has an dichroic
Tertiary Mirror (TM) on top of the PM. It separates the Secondary Mirror beam
into the infrared spectrum and the visible spectrum and diverts both by 90° through
the horizontal Nasmyth-Tube. The infrared spectrum is observed by the SI, which
is attached to the Nasmyth-Tube using the Science Instrument Flange. The visible
part of the beam is diverted to the FPI+ to enable star tracking for stabilizing the
telescope and additional observations. The Wide Field Imager (WFI) and Fine Field
Imager (FFI) for star tracking and telescope guidance are mounted on the telescope
structure in the cavity and will be soon upgraded to WFI+ and FFI+.

Figure 1.4: SOFIA Cassegrain Optics [14]
The Primary Mirror focuses the image on an opposing Secondary Mirror.
The Secondary Mirror beam is then split and diverted by the Tertiary
Mirror through the Nasmyth-Tube to the Science Instrument.
Counterweights keep the cabin side and the cavity side of the TA in balance.

5

1 Introduction

1.4 Telescope Software and Electronics

Besides the telescope mechanics, the telescope electronics and software is indispensable
for operating SOFIA. It allows controlling the telescope and enables an active image
stabilization to improve the image quality.
The telescope control is divided into numerous subsystems with speci�c tasks, con-
nected via Ethernet or CANaerospace to the MCP. This computer is in charge of syn-
chronizing and controlling the di�erent subsystem as well as monitoring their system
states as shown in Figure 1.5.

MCP
Supervision &
Synchronization

MCCS
User

Interface

TASCU
Servo
Control

ATCU
Attitude
Control

RDACU
Rotation
Drive
Control

SMCU
Secondary
Mirror
Control

TRC
Star

Tracking

Figure 1.5: Ethernet Network Topology of the TA

The Secondary Mirror Control Unit (SMCU) is responsible for controlling the Sec-
ondary Mirror Mechanism (SMM) and therefore for the telescope focus and the chop-
ping, using specially adapted control loops.
Star tracking and telescope guiding is made possible by the Tracker (TRC), as this
unit evaluates the images of WFI, FFI and FPI+. Currently, the Tracker is a separate
physical unit, but a combined TRCU (TRC and MCP) is under development.
The telescope's elevation can be adjusted using the Coarse Drive and the alignment
on the target by the Fine Drive. For adjusting the Center of Gravity, four Balance
Drives are available. All of these drives are controlled by the Telescope Assembly
Servo Control Unit (TASCU). Therefore, the TASCU communicates with the Attitude
Control Unit (ATCU) and the Rotation Drive Assembly Control Unit (RDACU) to
get Gyro and Spherical Sensor data as shown in Figure 1.5. Additional data for the
TASCU is provided by sensors connected to several Network Extended Control System
(NECS) Nodes from Stock Flight Systems. They are connected via CANaerospace
buses to the TASCU as shown in Figure 1.6. These measurements are provided by the
TASCU for other units in form of Housekeeping Data sent to the MCP.

6

1.4 Telescope Software and Electronics

Figure 1.6: CAN Network Topology [18]
The CANaerospace network is divided into four buses A�D.
CANaerospace Network A and B connect the di�erent NECS Nodes to
the TASCU, which makes use of most of the sensor data. The network C
connects the Power Distribution Unit (PDU), the Pressure Window Control
Unit (PWCU) & Primary Mirror Electronics and most important for this
thesis, the Annunciator Panel, to the MCP. CANaerospace Network D is
used for connecting the FPI+ and a position encoder within the Delay Line
to the Tracker.

The Mission Controls and Communications System (MCCS) forms the front end of
the telescope control, o�ering a Java based GUI and a Command Interface for the
Science Instruments. It enables the two Telescope Operators to command and monitor
the telescope with a few mouse clicks. The MCCS itself sends the TO's and SI's
commands to the MCP which forwards them to the corresponding TA subsystem.

7

1 Introduction

1.5 Annunciator Panel

In order to operate the telescope in a proper way, the Telescope Operators and the
ground personnel need to know the state of the telescope and its subsystems. Per
Layout Plan, an Annunciator Panel is situated at the TO console and displays both GO
and no-GO states of the telescope systems. The annunciations are divided into alerts
(red), warnings (yellow), nominal operation (green) and neutral information (white).
Every new alert is �rst displayed inverted in black letters on a red background to
indicate a user acknowledge is necessary. The ANPA is part of the CANaerospace Bus
C as shown in Figure 1.7.

Figure 1.7: CAN Bus C Network Topology with the Annunciator Panel [18].
TAMCP is equal to the MCP referred in this thesis.

Until now, the panel had only a passive role as no direct user interaction with the
ANPA was possible. It was updated incrementally with no possibility for the user to
refresh the displayed annunciations. For acknowledging new annunciations, a Software
Annunciator Panel is o�ered by the MCCS. The ANPA o�ered no status indication
to make the user aware of any ANPA internal error. These issues complicated the
TO's and the ground personnel's work unnecessarily and impacted their situational
awareness.
By enhancing the ANPA's capabilities with interactivity and error detection mecha-
nisms, the users can stay focused on their actual tasks.

8

1.5 Annunciator Panel

As the MCCS is managed and operated by NASA, a separate tool for displaying im-
portant telescope parameters in the absence of the MCCS was needed. Even though
the Diagnostics and Control Computer (DCC) o�ers an interface to some Housekeep-
ing Parameters, some information, like the Power Supply voltages and currents, is not
available. Adding these Housekeeping Parameters into the ANPA enables the DSI
engineers and the ground personnel a faster and more e�cient way to work.
This said, a new Concept of Operations [6] was derived (as required by the DSI Top
Level Design Process in section 3.1). The detailed requirements for the new software
are listed in the Software Requirements Speci�cations [9]. The Concept of Operation
for the new software features the following functionalities:

� More annunciation colors allow a more precise distinction between the di�er-
ent annunciation types.

� Interactivity allows the user to acknowledge new alerts or commanding a refresh
of the displayed annunciations directly on the ANPA

� Housekeeping Pages display selected Housekeeping Parameters provided by
the MCP. This is especially useful for the ground personnel.

� Error Handling ensures the nominal operation of the Annunciator Panel and
makes it robust against external and internal sources of errors.

� Built-In Tests track the state of the system and its surrounding systems and
make the user aware of any o�-nominal states.

In the following Chapter 2, the detailed hardware and software layout of the Annun-
ciator Panel will be explained in detail. Chapter 3 describes the preliminary work in
advance of the development of new functionalities. As there was no su�cient docu-
mentation of neither the hardware nor the software, the given explanations are the
result of a reverse engineering process of the ANPA. Chapter 4 explains the design
and implementation of the functionalities above in the new software. This follows the
presentation of the �ndings during the software development in Section 4.10. In par-
ticular, design related performance issues will be analyzed and discussed. The thesis
closes with a brief summary and an outlook for future updates and upgrades in Chapter
5.

9

1 Introduction

Figure 1.8: ANPA-2 Unit with the new Software

10

2 System Analysis

Before a new improved design for the Annunciator Panel can be developed, the current
hardware and software needs to be analyzed in detail. Due to the lack of a su�cient
system description and sparsely documented source code, the system needed to be
reverse engineered. Building on the deep knowledge of the existing functions and
the hardware architecture, new functionalities could be developed. A more detailed
hardware description can be found in the newly created System Description Document
[8]. As the current hardware design led to performance issues as described in section
4.10.1, it is explained in detail within this chapter.

2.1 Hardware

The �rst generation Annunciator Panel from Kayser-Threde was carried out as dedi-
cated hardware for SOFIA. It consisted of a FPGA and 40 x 4 prede�ned color patterns
for displaying the annunciations, carried out as 5.75" DZUS rack housing. The current
hardware is the second generation Annunciator Panel which was introduced in 2011. It
was originally designed by Stock Flight Systems as Rotax 912iS Engine Management
Unit and contains only a modi�ed software for the usage as a drop-in replacement, 100%
compatible to the original Annunciator Panel. A Proof of Concept for new software
functionalities and interactivity was carried out by an intern (M. Heck) in 2014/2015.
The hardware consists of three basic components:

� TFT-LCD Display Unit

� GPU: PicoMOD DCU-Lx (F & S)

� FPGA: Spartan-3 (Xilinx)

Besides that, there are di�erent GPIO-Ports, two CAN and a serial interface, four
buttons, a rotary encoder, a bi-color LED and a SD-Card interface available.1

2.1.1 Display and GPU

The display unit is an 640 x 480 px TFT-LCD display. It is controlled by a PicoMOD
DCU-Lx Graphics Processing Unit (GPU) which o�ers two basic operation modes:
compiler mode and terminal mode [2]. The PicoMOD processor is delivered with a
compiled and �ashed software developed by Stock Flight Systems, containing only the
company's logo for the startup screen.
1The GPIO-Ports, CAN bus 2 and the serial interface are currently unused.

11

2 System Analysis

2.1.2 Spartan-3 FPGA

Physically, the Spartan-3 family architecture consists of �ve fundamental programmable
elements, as shown in Figure 2.1 [24]:

� Con�gurable Logic Blocks (CLBs) contain RAM-based Look-Up Tables to
implement logic and storage elements that can be used as �ip-�ops or latches.
CLBs can be con�gured to perform a wide variety of logical functions as well as
to store data.

� Input/Output Blocks (IOBs) control the �ow of data between the I/O pins
and the internal logic of the device. Each IOB supports bidirectional data �ow
plus 3-state operation.

� Block RAM provides data storage in the form of 18-Kbit dual-port blocks.

� Multiplier blocks accept two 18-bit binary numbers as inputs and calculate the
product.

� Digital Clock Manager (DCM) provide self-calibrating, fully digital solutions
for distributing, delaying, multiplying, dividing, and phase shifting clock signals.

Figure 2.1: Physical FPGA Layout [24]
The Spartan-3 FPGA consists of �ve fundamental elements: Con�gurable
Logic Blocks (CLBs), Input/Output Blocks (IOBs), Block RAM, Multiplier
blocks and Digital Clock Manager blocks (DCM).

As the CLBs and IOBs are only RAM based, the FPGA's elements need to be re-
con�gured after each power cycle. An external Flash Memory stores therefore the
FPGA's con�guration permanently in form of a bit stream which is loaded directly
after powering up the system. By �ashing a new bit stream, the FPGA layout can be
changed.

12

2.1 Hardware

The current con�guration divides the FPGA into several subunits with additional pe-
ripheral cores, as shown in Figure 2.2.

Display
F&S DCU-Lx
PicoMOD1

GPU

Microblaze 1
Display

Application

Microblaze 0
CAN Application

Xilinx Spartan-3 FPGA

ANPA 2

CAN 0

CAN 1

RS-232

GPIO

SD

App 0 App 1 DPRAM

Bosch C_CAN
Controller 1

Bosch C_CAN
Controller 0

SRAM (2 MB) Bit
Stream

PWM

Counter

Timer

PLBBRAM

BRAM

LMB

LMB
Buttons

App 0 App 1

Flash Memory (16 MB)

Memory
Controller

XCL

XCL

Figure 2.2: Simpli�ed ANPA2 FPGA Layout as it is used.
All components are connected by Processor Local Bus (PLB) (bold lines),
Local Memory Bus (LMB) (only Block Random Access Memory (BRAM)),
Xilinx Cache Link (XCL) (only Static Random Access Memory (SRAM))
or direct wiring.
Additional converters from the PLB to the serial interfaces, buttons and
GPIO are not displayed.

MicroBlaze Microcontrollers

Two programmable MicroBlaze Microcontrollers (0 and 1) are de�ned in the FPGA
layout. Several blocks of BRAM2 are connected to them via LMB. During the initial-
ization process of the FPGA, both memories are loaded from the Flash Memory with
distinct bootloaders, which are part of the FPGA's bit stream. After the completion
of the initialization process, both MicroBlazes set their program counter to the address
0x50 and start executing their bootloader as explained in section 2.2.1. The actual
application of each Microcontroller is stored in separate partition of the Flash Memory.

28 KB to MicroBlaze 0 and 32 KB to MicroBlaze 1

13

2 System Analysis

An external SRAM contains the application code during runtime and a special section
called Dual-Port Random Access Memory (DPRAM) for data exchange between the
Microcontrollers as shown in Figure 2.2.
In general, MicroBlaze 0 is responsible for controlling the CAN communication with
the CAN participants. It controls the two CAN controllers and copies new messages
to a de�ned section of the shared memory (DPRAM).
MicroBlaze 1 on the other hand is responsible for processing the new CAN messages
in the DPRAM and reacting to user inputs. Additionally, it commands the display
processor PicoMOD through a serial connection.

Bosch C_CAN Controllers

Two Bosch C_CAN Controller IP Cores are implemented in the FPGA design. Each
controller is responsible for transmitting and receiving messages on this bus and con-
nected to a CAN bus as shown in Figure 2.2. Both of them hold several registers
for con�guration and control. The layout of these registers can be found in the Bosch
C_CAN Controller User's Manual [17] and will be used later in the software for con�g-
uring the controllers and reading/transmitting CAN messages. In the SOFIA design,
only bus 0 is used for communication with the MCP.

Peripheral IP Cores

Several peripheral IP Cores are included in the FPGA design in addition to the two
MicroBlaze CPUs and Bosch C_CAN Controllers. A Pulse Width Modulation (PWM)
Controller is used for modulating a square wave signal to dim the displays background
illumination.
For the timing of the custom applications executed on the MicroBlazes, a timer is con-
�gured to generate interrupts every millisecond. These interrupts trigger the execution
of an Interrupt Service Routine (ISR) as explained in section 2.2.
An additional counter IP Core is used to count the ticks of the rotary encoder on the
front panel.
All peripheral IP Cores can be accessed by both MicroBlaze Microcontrollers.

2.1.3 Periphery

The state of the front panel buttons is available as single byte register value. Each bit
in this variable represents the state of a button.
The Annunciator Panel also o�ers a serial RS-232 interface to send and receive messages
for debugging purposes. A connection can be established using the following settings:
115.200 baud, 8 data bits per character, 1 stop bit and no parity bit.
A SD-Card reader enables reading and writing data to an external medium. It is used
for updating the applications of the two Microcontrollers as explained in section 2.2.1.

14

2.2 Software

2.2 Software

The two MicroBlaze Microcontrollers and the PicoMOD GPU make use of a distinct
software. As the software of the PicoMOD is only used for the start up image and
can't be changed, it will be neglected in this chapter.
Both of the MicroBlazes provide their own bootloader that manages the startup and
provides basic functionalities. They load and execute a distinct application from the
�ash memory which provide additional functionalities like CAN communication or
display driving. These applications are the target for changes of the ANPA. They
share the DPRAM for exchanging CAN messages. The layout of this shared memory is
shown in Figure 2.3.

DPRAM

+ loop_cnt: uint32
+ mod_type: int32
+ fpga_revision: int32
+ hw_rev: int32
+ fw_rev: int32
+ build_date: uint32
+ bit_result: int32
+ module_name[40]: uint08
+ eth_tc_interval[8]: int32
+ can[2]: CAN_IF

Figure 2.3: DPRAM Structure

It contains several variables to indicate version information. Furthermore two struc-
tures CAN_IF bu�er the received and the pending outgoing CAN messages for the two
channels. To avoid collisions, no variable and bu�er will be written by both applica-
tions.
The two applications currently also use a common software layout: During the startup
they initialize the hardware, interrupts and their variables. This includes setting up
the aforementioned timer to generate interrupts every millisecond. The corresponding
ISR increments a global timing variable low_time . After the initialization process,
an in�nite main loop is executed. Every cycle of this loop must take less than one
millisecond. At the end of each cycle, the execution is paused by a spin lock3, waiting for
the timer interrupt to increment the timer variable low_time and thereby triggering
the next cycle. Within this loop the actual tasks of the application are being processed.
Some of these tasks may be executed in every loop cycle, whereas some will be executed
with a de�ned period. The arrangement and execution time of these tasks will be
discussed later in chapter 4.9.

3The thread waits within a loop ("spin") for the release of the lock.

15

2 System Analysis

2.2.1 MicroBlaze bootloaders

As explained in chapter 2.1.2, each MicroBlaze Microcontroller comes with its own
bootloader stored in the BRAM. These bootloaders are executed after the FPGA's
initialization process �nishes. In the beginning, the bootloader of MicroBlaze 0 searches
for updates on the SD-Card. These updates must be stored as S-Record �les and
named mb0.srd for MicroBlaze 0 and mb1.srd for MicroBlaze 1. If these �les are
found, the new software versions are �ashed to speci�c addresses in the external Flash
Memory. The bootloader running on MicroBlaze 1 waits during the update process for
MicroBlaze 0 to �nish.
After this, both bootloaders start mapping the contents of the S-Record �les in the
Flash Memory to their memory locations, as speci�ed by the Linker. In case of the
current software layout, the targeted memory is the external SRAM module. However,
it is possible to map parts of the application's code to di�erent memory types and
addresses like the BRAM. This will become relevant in Section 4.10.1.
As soon as the mapping of the applications is �nished, both MicroBlaze CPUs set
their program counter to the start address of the corresponding application and start
with their execution. During normal operation, the execution won't return to the
bootloaders.

Annunciator Panel Startup

Execution SRAMFlashSD-Card BRAM

A
p

p
lic

at
io

n
St

ar
t

B
o

o
tl

o
ad

e
r

FPGA Configuration
(Applications)

mbx.srd
Bootloader

M. Stock

Application

Bootloader
M. Stock

Application

Application
Copy

Copy

Figure 2.4: Bootloader Activity Diagram
After the FPGA is initialized, the bootloaders from Stock Flight Systems
are being executed. If any software updates are found on the SD-Card, they
are copied to the corresponding address in the Flash Memory. Afterwards,
the code is mapped to the SRAM, to be then executed.

16

2.2 Software

2.2.2 CAN Application

Initialize CAN Controllers

Initialize DPRAM

Set Up Timers

Set Up Interrupt
Controllers

Transmit CAN
Messages

Process Firmware
Control Commands

Update CAN Status
(10 ms)

Update Bus Load
(100 ms)

Figure 2.5: CAN Application Ac-
tivity Diagram

The CAN Application executed on MicroBlaze 0
is responsible for processing CAN messages. Dur-
ing the startup of the software, both CAN con-
trollers and the DPRAM are set up and initial-
ized. Additionally to the loop timer, two inter-
rupts are set up to be triggered at the reception
of new CAN messages by one of the two Bosch
C_CAN Controllers. The application then exe-
cutes the following tasks within the main loop: At
�rst, and during every cycle, the CAN transmis-
sion bu�er in the shared DPRAM is checked for
new messages. If pending messages are detected,
they are being copied to the transmission bu�er
of the corresponding Bosch C_CAN Controller.
This follows the processing of �rmware control
commands which can be sent from MicroBlaze 1 to
MicroBlaze 0 using a dedicated section within the
DPRAM . During every 10th execution of the in�nite
loop, the status of the Bosch C_CAN Controllers
is written to the DPRAM for further processing.
Afterwards, the bus usage counters in the shared
memory are updated every 100 ms.
An Interrupt Service Routine will be executed in
case of a newly arrived message on either one of the
Bosch C_CAN Controllers. This routine checks
the new message for correctness and then copies
it to the structure variable DPRAM . They will
then be processed by the Display application on
MicroBlaze 1. In case of any bus disturbances,
the controller detaches from the bus and switches

to the "Bus O�" mode as explained in Section 4.10.3. This triggers an interrupt on
MicroBlaze 0 which starts the reinitialization process of the CAN controller.

Period / ms Task

1 Transmit pending CAN messages
1 Process �rmware control commands
10 Update the CAN status and increment the �rmware loop counter
100 Update the tx/rx message and bit counters
60 000 Update the board temperature

Table 2.1: Timing of the CAN Application Tasks

17

2 System Analysis

2.2.3 Display Application

Set Up Timers

Set Up Interrupt
Controllers

Initialize Screen

Process Switch
States

Process Encoder
State (10 ms)

Read CAN
Messages (50 ms)

Send Heartbeat
(10 000 ms)

Figure 2.6: Display Application
Activity Diagram

The Display application is executed on MicroBlaze
1 and responsible for servicing the display and re-
acting to user commands. During the boot pro-
cess, the hardware is initialized. This includes set-
ting up the timer for the interrupt, setting up the
peripheral inputs like buttons, rotary encoder and
SD-Card as well as initializing the PWM for con-
trolling the display's brightness. After waiting 10
seconds for the PicoMOD GPU to exit its boot
sequence, the DCU-Lx is con�gured. At �rst, the
Stock Flight Systems company logo is displayed
and the DCU-Lx switched to terminal mode. This
follows setting up several parameters like font, cur-
sor positioning mode and line wrap. During the
�rst 4000 cycles of the in�nite loop, the four pages
of the DCU-Lx are being initialized. The annun-
ciation grid is drawn to page 0 and 1 for later
switching between the pages. A lamp test pattern
is drawn to page 2 in order to test the screens
capabilities by pressing the encoder button.
Afterwards the application serves repeatedly tasks
withing the in�nite main loop. The states of the
softkeys are evaluated in every execution cycle of
the loop. As there is currently no action assigned
to any button, nothing will be executed. The state
of the rotary encoder counter is checked every 10
ms. If the state has changed, the display bright-

ness will be adjusted by the PWM controller. The incoming CAN message bu�er in
the DPRAM serviced by MicroBlaze 0 is checked every 50 ms. In case of new mes-
sages, the CAN identi�er, message code and service code are being evaluated and the
proper action performed. In order to enable the MCP to check the Annunciator Panel's
operation status, a heartbeat message is sent to the MCP every 10000 ms.

Period / ms Task

1 Process switch states
10 Process encoder state
50 Read CANaerospace messages received from CAN channel 0
10 000 Send a heartbeat message

Table 2.2: Timing of the Display Application Tasks

18

3 Preparatory Work

Given the state of the software and the documentation, developing and compiling the
new software for the Annunciator Panel requires some preparatory work. This includes
creating a build environment containing the source code �les, installing the compiler
and linker executables and setting up a make�le. The development of the software will
be guided by a development process.

3.1 Software Design Process

The DSI Top Level Design Process [25] was derived from the NASA Systems Engineer-
ing Handbook and divides the process of software development into 4 phases.
The �rst phase is triggered by a request for a new feature. This request needs to be
analyzed and broken down into top level requirements to the hardware and software.
These requirements are used to estimate a budget, personnel and resources estimation.
This knowing, a project plan de�ning and assigning the milestones of the project needs
to be developed. A Concept of Operations (ConOps) describes the di�erent use cases
which the new software needs to cover. Additionally, the interfaces of new software are
designed and procedures for Veri�cation & Validation (V&V) of the systems prepared.
The �rst phase ends by a System Requirements Review.
This follows the second phase of the development process. It mainly consists of the
preliminary design process, which may lead to the design of di�erent solutions with a
subsequent selection. The testing procedures for the V&V process are devised and the
schedule updated. A Preliminary Design Review checks the feasibility of the proposed
system design.
During the third phase of the software development, the preliminary design and the
interfaces are �nalized and reviewed in the Critical Design Review. After the approval,
the new features are implemented in the software and tested. The developed code must
be documented in a way enabling an easy understanding of its purposes.
The last phase of the software development consists of testing the new software. During
the process of Veri�cation & Validation, the software is checked for meeting all of the
de�ned requirements and if the functionalities work properly. A user manual provides
information on how to use the new system. A lessons learned document is used to
record any improvements for future projects.
Normally these four phases are followed by the operation and possible system upgrades.
At the end of the system's life cycle, it needs to be decommissioned.

19

3 Preparatory Work

3.2 Source Code Repository

Repository

ANPA_CAN

ANPA_Display

ANPA_Include

bootloader_0_msd

bootloader_1_msd

bootloader_ram_0

bootloader_ram_1

Common_SW

include

src

microblaze_0

microblaze_1

Makefile

linker.ld

Figure 3.1: Folder Structure

In order to enhance the traceability of the applied
software changes, the folder structure containing the
C source �les and libraries used for the software was
checked in a Concurrent Version System (CVS) repos-
itory on the DSI server. It is organized as Figure 3.1
shows.
The �rst two folders ANPA_CAN and ANPA_Display

contain the source �les for the CAN- and Display-
application. ANPA_Include contains the appli-
cation's header �les. These source and header �les
are target of the desired changes of the current soft-
ware. The following bootloader_x_msd folders con-
tain the original bootloader code of Stock Flight Sys-
tems, whereas the folder bootloader_ram_x con-
tain the new SD-Card bootloader code as described
in section 3.5. Common_SW includes libraries
used by the bootloaders and the applications. Some
MicroBlaze-speci�c library functions are contained in
the microblaze_x folders. The last items Makefile

and linker.ld in the build environment de�ne the
rules for the build process.
Newer software builds will only di�er in the �les con-
tained by the folders ANPA_CAN , ANPA_Display and
ANPA_Include .
The initial software version 1.6 was committed with
the tag F20130429_001 , whereas F20180409_001

was used for tagging the new and most recent version
2.0.

3.3 MicroBlaze Toolchain

The MicroBlaze toolchain developed by Xilinx provides the needed tools for the build
process. They are derived from the GCC and GNU Binutils libraries and modi�ed
for the MicroBlaze architecture. As the toolchain is only compatible to Windows and
Linux, a solution for Mac using Wine, a Mac compatible runtime environment for
Windows applications, was found. The �nal build was compiled using the DSI Linux
server with the following software versions:

MicroBlaze toolchain: 12.3 (built 2010-07-14)
GCC: 4.1.2 (built 2007-02-14)
Binutils: 2.16 (built 2005)

20

3.4 Make�le & Linker Script

3.4 Make�le & Linker Script

A single Make�le de�nes the rules for the build process. Setting up the Make�le
properly is mandatory for building an executable application and prevents mistakes
due to architectural problems or missing libraries.
It is perfectly tailored for the mentioned repository structure, referencing all listed
folders. New source or header �les placed in the given directories will be detected and
included to the build process.
In order to execute parts of the generated binary objects from di�erent memory types
and regions, a linker script was set up. Therefore, the default linker script from Xilinx
was extended to be able to link the code to the BRAM section as needed in chapter
4.10.1.
The Make�le o�ers the following rules for building the project:

� all: Build all executables

� clean: Delete all executables in the build environment

For building the applications, the command make clean all is recommended.

3.5 SD-Card Bootloader

Developing a new software comes along with a debugging process of the new code with
several iterations. During the debugging process of the ANPA, the new software needs
to be �ashed to the Flash Memory to be then tested, which leads to a high number
of Flash Memory writes. Because of the limited number of possible writes to a Flash
Memory1, this proceeding causes a shortened lifespan of the Flash Memory and the
ANPA.
In order to avoid this, two new second level bootloaders were developed. Their purpose
is to load the applications directly from the SD-Card into the SRAM instead of writing
them to the Flash Memory in advance. These second level bootloaders are �ashed once
to the �ash memory instead of the actual applications. During the startup process,
the initial bootloaders of Stock Flight Systems load and execute the second level boot-
loaders. These in turn search the SD-Card for application �les named mb0_ram.srd

for MicroBlaze 0 and mb1_ram.srd for MicroBlaze 1. If these �les are found, they
are being mapped to the targeted memory and executed afterwards.

1about 100 000 according to [23]

21

3 Preparatory Work

Annunciator Panel Startup

Execution SRAMFlashSD-Card BRAM

A
p

p
lic

at
io

n
St

ar
t

B
o

o
tl

o
ad

e
r

FPGA Configuration,
Second Level
Bootloader

mbx_ram.srd
Bootloader

M. Stock

Application

Bootloader
M. Stock

Application
CopySecond Level

Bootloader

Figure 3.2: Annunciator Panel Startup during Development
After the FPGA is initialized, the bootloaders from Stock Flight Systems
are being executed. These in turn execute the new second level bootloaders,
which map the application from the SD-Card to the targeted memory, to
be then executed.

This procedure not only safes lifetime of the Annunciator Panel but also speeds up the
debugging process as �ashing is only required once. It must be noticed, that this process
makes the usage of an SD-Card indispensable and therefore is not recommended for
operation. However, these new second level bootloaders will be only used for debugging
purposes and not in the �ight software.

22

4 Implementation & Findings

The new Annunciator Panel software was developed, based on the latest available soft-
ware version 1.6, which was released 2013 by Stock Flight Systems. In the beginning,
this code was analyzed in Section 2.2 to be then optimized and cleaned up in order
to have a solid base to start with. Afterwards the requirements were implemented as
de�ned in the Software Requirements Document [9]. The implementation of the most
important requirements will be explained in this Section. A more detailed description
of the software layout and the implementation of the functionalities can be found in
the System Description Document [8].

Figure 4.1: Revised Annunciation Page Layout
The title section of the screen de�nes the annunciation columns with the
annunciations listed in the center of the screen. The bottom of the screen
is used to label the softkeys and to display the UTC time.

23

4 Implementation & Findings

4.1 State Model of the new Software

The new software now features four di�erent pages, as shown in Figure 4.2. The
Annunciation Page is de�ned as the Home Page and will be displayed after booting
the system. From there, the Housekeeping Pages and the Built-In Test (BIT) can be
reached. As demanded by Requirement #6.1, a way back to the Annunciation Pages
is provided on every page. Additionally, the system will automatically return to the
Annunciation Page after 20 s of user inactivity (Requirement #2.1b).

Housekeeping Pages

Annunciation Page

Display annunciations
+ Adjust Brightness
+ Start BIT
+ Display Housekeeping Data
+ Confirm Internal Error
+ Acknowledge Annunciations
+ Refresh Annunciations

BIT Page

Execute BIT on Demand
+ Adjust Brightness
+ Confirm Internal Error
+ Back to Annunciations

Housekeeping Page 1

Display HK page 1
+ Adjust Brightness
+ Display next Page
+ Confirm interal Error
+ Back to Annunciations

Housekeeping Page 2

Display HK page 2
+ Adjust Brightness
+ Display next Page
+ Confirm interal Error
+ Back to Annunciations

BIT
pressed

HK Data
Pressed

Next
Next

Back

Back

Back

Figure 4.2: State Diagram of the new Software
All pages are reachable from the central Annunciation Page.

24

4.2 Annunciation Colors

4.2 Annunciation Colors

In order to allow a more precise distinction between the di�erent annunciations, more
colors were introduced. So far, white was used for neutral annunciations, green for
nominal operation, yellow for warnings and red for indicating alerts. According to Re-
quirement #2.4a [9] cyan, magenta, orange and blue were added to the list of available
colors. Therefore, one of the reserved bits in the service code of the annunciation mes-
sage was used. Currently, only cyan is used for indicating advisories to the user, but
more colors may be used in a future update of the MCP software. Figure 4.1 shows
examples for annunciations in all currently used colors.

4.3 Acknowledge & Refresh

Up to now, new alerts could only be acknowledged using the Software Annunciator
Panel on the MCCS. In case of outdated annunciations, the only possibility to indirectly
request a refresh from the MCP was to command a lamp test on the MCCS. This means
that the ANPA was not able to provide its annunciation function independently from
the MCCS, as Requirement #2.7 and #2.8 [9] are demanding.
Therefore, two new CANaerospace messages were established to send these two requests
from the ANPA to the MCP. By pushing the right softkey shortly, an acknowledge
request is sent to the MCP. This in turn acknowledges the unacknowledged alerts
and updates the displayed annunciations. A long push of the right softkey triggers
the transmission of a refresh request message by the ANPA. The MCP reacts to this
message by refreshing all 40 indicator �elds on the Annunciator Panel.

4.4 UTC Clock

Even though the ANPA doesn't have an internal Real Time Clock, the Annunciator
Panel o�ers the possibility for time measurement during runtime, as the execution of
a main loop of the Display application is triggered by a timer controlled ISR every
millisecond. The start value of the internal clock is provided by the MCP, which uses
the IRIG-B time signal from the aircraft's GPS sensor. As explained in section 4.7,
the ANPA now may synchronize its internal clock with the MCP every minute during
the continuous Built-In Test. The UTC time is displayed above the SD-Card slot as
shown in Figure 4.3 and requested by Requirement #2.5d [9] indicating the time and
the nominal operation of the Annunciator Panel. This allows every user to determine
the ANPA's proper operation with one quick look.

25

4 Implementation & Findings

4.5 Housekeeping Page

On the aircraft, the DSI is responsible for the Telescope Assembly and NASA for the
aircraft and the MCCS. During the �ight preparation and maintenance work by the DSI
team, the MCCS may not be available for displaying Housekeeping Data. The DCC
o�ers a limited interface to these Housekeeping Parameters, but some values may not
be available within this system. In order to allow an easy access to the most important
values, two Housekeeping Data Pages were integrated in the new ANPA software as
requested by the Requirements #3.1 - #3.14 [9]. They can be displayed and switched
by clicking the left softkey.
Therefore, several new CANaerospace messages were introduced to enable the ANPA
to request these parameters from the MCP. Whenever the MCP receives these request
messages, it responds by sending the requested values back to the Annunciator Panel.
The ANPA on the other side eventually needs to cast these values to the appropriate
type and store them for the later display process.
Due to current performance restrictions as described in section 4.10.1, the values are
only updated once per second (see Requirement #3.3).

Figure 4.3: The Housekeeping Page 1 displays the timestamps of several TA subsystems
and a selection of temperatures of the hydraulic system and the Cavity.

26

4.6 Error Handling

Figure 4.4: The Housekeeping Page 2 displays the voltages and currents of the Power
Buses and the Uninterruptable Power Supply

4.6 Error Handling

Up to now, the Annunciator Panel o�ered no internal error detection and failed silently.
Due to the divided system design, a system crash didn't lead to a black screen, but
to freeze the current annunciations. Because there was no internal error detection,
the user was not able to tell if the shown annunciations were still being updated and
therefore relied on the outdated annunciations. This may lead to critical situations
were the user was no longer aware of the system alerts.
As a �rst step, a clock was introduced in section 4.4 to display the UTC time which
serves additionally as a heartbeat indication of the ANPA.
As stated in the Requirements #5.3 - #5.5 [9], in a second step, an error handler
was created to catch internal errors and inform the user about their occurrence. The
handler consists of an error queue, two functions to add and remove errors from the
queue, and a routine to display the errors. The queue itself is designed as a linked list,
that is ordered by the priority of the error. Each function was redesigned to detect and
report their most common errors. If an error is detected, a new node is added to the
queue at the position according to the error's priority. A second routine later checks

27

4 Implementation & Findings

the error queue for errors and performs countermeasures based on the error code. If the
error couldn't be �xed, an error message for the error with the highest priority instead
of the clock is displayed above the SD-Card slot. Additionally, the LED blinks red.
In case of a non responsive subsystem, the corresponding annunciation column header
is backgrounded in red rather than displaying an error message. The full list with all
available error messages and their criteria and impacts is available in the ANPA User
Manual [11].
A situation with a non responsive TASCU and a CAN bus error is shown in Figure
4.5.

Figure 4.5: Error situation with a CAN bus error and the TASCU not responding.

The user is able to con�rm and thereby remove an error message from the queue by
pushing the center softkey with the label "ERR OK". Con�rming all errors in the queue
is possible by a long push of the same softkey. Both functionalities are accessible on
all pages.
However, it is only possible to con�rm error messages which are displayed above the
SD-Card slot. Subsystem connection errors can't be con�rmed. They will be removed
automatically, after the subsystem becomes responsive again.

28

4.7 Continuous Built-In Test

4.7 Continuous Built-In Test

In order to ensure a correct operation of the Annunciator Panel and to be able to iden-
tify problems, two Built-In Test (BIT) mechanisms were implemented. A continuous
BIT is executed every minute and checks several system parameters. An additional
Built-In Test on Demand can be commanded by the user and focuses more on testing
the graphical capabilities as an extension to the existing lamp test. The continuous
BIT performs several internal and external checks as demanded by the Requirements
#5.1 and #5.2 in [9]. If any error is detected, the corresponding error, as listed in the
User Manual [11], will be thrown.
In detail, the following checks are performed:

� Board temperature: The board temperature is checked to be within reasonable
range (-5°C � 50°C).

� Power-on time: The Annunciator Panel's power-on time needs to be under 49
days, as the timing variable low_time from chapter 2.2 will over�ow.

� Connection to MCP, TASCU, SMCU and TRC: In order to check the
connection to these four subsystems, the ANPA requests their timestamps from
the MCP �ve seconds before executing the Built-In Test. If the timestamps are
less or equal to the timestamps received during the previous BIT, the connection
is marked as faulty.

� Connection to DCU-Lx: Five seconds before the Built-In Test is performed,
the software version of the DCU-Lx is requested. If the answer doesn't match
the default "DCUWINCE/8BPP", a connection error is thrown.

� SD-Card1: This test checks the SD-Card for availability and for free space. If
the card is full, an space error indicates issues with the SD-Card.

� CAN status: The status of the Bosch C_CAN Controller 1 is read from the
DPRAM and evaluated. The states are de�ned in the Bosch C_CAN User Man-
ual [17].

� CAN usage: The CAN usage is calculated by the Bosch C_CAN Controller
and available in the DPRAM. After applying a moving average with a timespan
of one minute, the usage of CAN Bus 1 must be under 80%.

1only during the start up BIT

29

4 Implementation & Findings

4.8 Built-In Test on Demand

Additionally to the continuous BIT, the user can command a BIT on demand which
focuses on testing the graphical capabilities as de�ned in the Requirements #4.1 -
#4.7 [9]. The test can be commanded by a long push on the encoder button and starts
with displaying a lamp test pattern. This follows displaying a red, green and blue
background and dimming the brightness from 0% to 100%. Afterwards, a result page
summarizes the test's outcome as shown in Figure 4.6.
The following checks are performed additionally to the graphical test:

� Board temperature

� Power-on time

� Connection to MCP

� SD-Card

� CAN status & usage

Figure 4.6: Built-In Test on Demand Result Page
All tests were successful except for the CAN bus check, which failed due to
a bus overload.

30

4.9 Task Scheduler

4.9 Task Scheduler

The system architecture of the Annunciator Panel causes two performance issues as
described in section 4.10.1. Due to these issues, some commands lead to an extended
execution time, longer than the mentioned 1 ms. Displaying a Housekeeping Page for
example consumes about 35 ms of CPU time, as several strings have to be concate-
nated. The combination of the static timing scheme as mentioned in section 2.2.3 and
the violation of the 1 ms requirement may cause a non-deterministic behavior of the
ANPA. In order to keep the reliability of the Annunciator Panel high, the software now
features a task scheduler. Therefore, the in�nite loop's tasks were broken down into
several smaller tasks as shown in Table 4.1. An Interrupt Service Routine is triggered
every millisecond and adds new tasks to a task queue based on the period of each task.
The in�nite loop was reduced to only check this task queue for new tasks and execute
them. This ensures that no task will be omitted and therefore leads to a determin-
istic behavior of the ANPA. Prioritizing the tasks guarantees the timely execution of
the most important task, whereas less signi�cant are postponed instead of dropped
completely.
The task queue in detail is an ordered linked list, as shown in Figure 4.7, where each
node represents a task. For registering a new task, a new node is added to the list at
the corresponding position.

Task Period / ms Priority

1 Update pages 1 100
2 Switch operation mode (1) 100
3 Service display bu�er (1) 50
4 Check softkeys and encoder 10 10
5 Check CAN messages 50 10
6 Service error queue, display time 50 50
7 Calculate CAN usage 100 100
8 Control front panel LED 500 200
9 Check page time out 1 000 200
10 Send heartbeat message 10 000 200
11 Perform continuous BIT 60 000 50

Table 4.1: Tasks of the Display Application
Tasks in brackets are only executed if a condition is ful�lled. High priorities
a represented by small numbers.

Figure 4.8 shows the Activity Diagram of the new Software with the task scheduler
and the system initialization. The process of updating the annunciations, after the
user requested a refresh, is shown in Figure 4.9.

31

4 Implementation & Findings

task_queue

TASK_NODE

+ task: *task_function
+ priority: uint08
+ time: uint32
+ due_time: uint32
+ name: char[50]

+ next: *TASK_NODE

TASK_NODE

+ task: *task_function
+ priority: uint08
+ time: uint32
+ due_time: uint32
+ name: char[50]

+ next: *TASK_NODE

TASK_NODE

+ task: *task_function
+ priority: uint08
+ time: uint32
+ due_time: uint32
+ name: char[50]

+ next: *TASK_NODE

task_executed

Figure 4.7: Layout of the Task Queue
The Task Queue is designed as a linked list where each node represents a
task. The two pointers task_queue and task_executed are used to
indicate the current entry point of the queue and the point of execution.

ANPA

MicroBlaze 1 C_CAN ControllerDPRAM MicroBlaze 0DCU-Lx

In
fi

n
it

e
 L

o
o

p
In

it
ia

liz
at

io
n

Intialize DPRAM

Set Up Timers

Set Up Interrupt
Controllers

Transmit CAN
Messages

Process Firmware
Control

Commands

Update CAN
Status (10 ms)

Update Bus Load
(100 ms)

Initialize Hardware
and Interrupts

Initialize Variables

Initialize Display

Perform Start-Up
Built-In Test

Request MCP
Time and Update

Execute Task

Move task_executed

Pointer to next Node

Yes

New Task Available?

No

Initialize
Controller

Figure 4.8: Activity Diagram of the new Software 2.0

32

4.9 Task Scheduler

Outgoing CAN Message
C

A
N

 B
u

s
M

ic
ro

B
la

ze
 1

Ta
sk

: C
h

ec
k

Sw
it

ch
es

(P
er

io
d

: 1
0

m
s)

D
P

R
A

M
M

ic
ro

B
la

ze
 0

In
fi

n
it

e
 L

o
o

p
Tr

an
sm

it
 M

e
ss

ag
es

 (
1

 m
s)

C
A

N
 C

o
n

tr
o

lle
r

CAN Message

Check Switch States

Clear Screen, Send Request
request_disp_refresh()

Assemble CAN Message
send_can_message()

Copy Message to DPRAM
can_buf_write()

CAN Message

Copy new Messages to
Controller

service_can_tx_buffers()

Buffer Message

Transmit CAN Message

(a) Refresh Request

Incoming CAN Message

M
ic

ro
b

la
ze

 1
Ta

sk
: U

p
d

at
e

Sc
re

en
(P

er
io

d
: 1

 m
s)

 C
A

N
 B

u
s

C
A

N
 C

o
n

tr
o

lle
r

M
ic

ro
B

la
ze

 0
In

te
rr

u
p

t
Se

rv
ic

e
R

o
u

ti
n

e
ca

n
_i

sr
()

D
P

R
A

M
M

ic
ro

b
B

la
ze

 1
Ta

sk
: P

ro
ce

ss
 C

A
N

 M
es

sa
ge

s
(P

er
io

d
: 5

0
m

s)

HK Data

Receive CAN Message

Check Message

CAN Message

Copy Message to DPRAM

Update ANPA_TEXT
struct

Check Message Identifier

Buffer Message

Print Annunciations to Screen
print_annunciations()

Annunciation

Copy HK Data to Struct
STORAGE

assimilate_data()

Respond to NSR
process_nsr()

Read Message
can_buf_read()

NSR

(b) Incoming Annunciation

Figure 4.9: CAN Message Flow
The internal processes of the MCP are neglected here.

33

4 Implementation & Findings

4.10 Findings

4.10.1 System Performance

During the development of the new Annunciator Panel software, memory performance
issues were discovered. Due to the current FPGA layout as shown in Figure 2.2, the
two bootloaders are executed from the BRAM, but the applications from the SRAM.
As the external SRAM chip is connected by the Processor Local Bus (PLB) to the
two MicroBlazes, the connection is much slower than the connection to the internal
BRAM using the Local Memory Bus (LMB). Therefore, a memory controller IP Core
was included into the FPGA design, to allow data and instruction caching for parts
of the SRAM. This IP Core uses parts of the FPGA's BRAM for caching purposes
and o�ers additional Xilinx Cache Link (XCL) connections to the MicroBlazes. If a
value within the cached range is addressed, the faster XCL bus is used, rather than
the slower PLB. In detail, the �rst block of 1 MB of the total 2 MB SRAM is being
cached. As the Display application is by default linked to the second block of 1 MB,
the application's code and values are outside of the cached range. This leads to an
increased execution time of the program code.
The code in Listing 1 was used to measure the impact of these issues. This program
measures the average speed of 10,000 variable assignments, additions, integer multi-
plications & divisions and �oating point multiplications & divisions, and prints the
results to the serial console. In order to compare the performance of di�erent memory
types and locations, the code was linked to BRAM, a cached and an uncached SRAM
region. The results of these measurements are listed in table 4.2.

Operation SRAM (uncached, default) SRAM (cached) BRAM

Variable Assignment 36 2 1
Integer Addition 168 9 5
Integer Multiplication 1510 71 (1301)
Integer Division 4910 266 (4701)
Float Multiplication 15406 744 (15197)
Float Division 9484 449 (9275)

Table 4.2: Memory Performance Measurement Results in Processor Cycles using Soft-
ware Multiplication and Division and Floating Point Unit
The results in brackets are invalid, as the libraries for software multiplication
and division are stored within uncached SRAM regions.

34

4.10 Findings

1 // Variables

2 volatile int var_1, var_2 = 123, var_3 = 456, i;

3 int tick_counter_loop, tick_counter_addition, loops = 10000;

4

5 // Empty loop performance

6 tick_counter_loop =

7 XTmrCtr_GetTimerCounterReg(XPAR_TMRCTR_1_BASEADDR, 1);

8 for (i = 0; i < loops; i++) {}

9 tick_counter_loop =

10 XTmrCtr_GetTimerCounterReg(XPAR_TMRCTR_1_BASEADDR, 1) -

11 tick_counter_loop;

12

13 // Addition performance

14 tick_counter_addition =

15 XTmrCtr_GetTimerCounterReg(XPAR_TMRCTR_1_BASEADDR, 1);

16 for (i = 0; i < loops; i++)

17 var_1 = var_2 + var_3;

18 tick_counter_addition =

19 XTmrCtr_GetTimerCounterReg(XPAR_TMRCTR_1_BASEADDR, 1) -

20 tick_counter_addition;

21

22 // Print results

23 xil_printf("Addition: %d\n\r",

24 (tick_counter_addition - tick_counter_loop) / loops);

Listing 1: Addition Performance Measurement Code
The program starts with de�ning all used variables and measuring the ex-
ecution time of an empty for-loop with 10,000 cycles. Afterwards, the per-
formance of 10,000 additions is measured and the di�erence, divided by the
number of loop cycles, printed.

As the results show, the uncached SRAM causes the highest latency, which is 36 times
lower when using the fast BRAM. A typical variable assignment requires two memory
accesses, �rst the instruction, including its value, needs to be loaded from the memory
to a register to be then stored back to the variable's address in the memory. As the used
memory region in the SRAM is not cached, both memory accesses need to be performed
during the execution time. Therefore, each access takes at least three cycles for the
bus arbitration and more cycles for data transmission, as stated in [22]. Additional
delays are caused by the SRAM chip.
If the program code and data is stored in a cached region of the SRAM, the execution
is in average 18 times faster for each operation, as both instructions and data will be
cached.

35

4 Implementation & Findings

In case of the execution from the BRAM, a variable assignment takes only one clock
cycle. This means, that the instruction is read, executed and the new value written to
the memory within one clock cycle.
As Table 4.2 shows, the execution time of a multiplication or division is signi�cant
longer than for an addition. The original project �le of the FPGA layout states, that
hardware Multiplication and Division Units for integer values and a Floating Point Unit
(FPU) were included in the design of the MicroBlaze Microcontrollers. Nevertheless,
the code was compiled by default using a software Multiplication and FPU. Only the
hardware Integer Division Unit was used. In order to measure the di�erence between
the software and the hardware units, the test above was executed a second time, using
the hardware Multiplication, Division and FPU. Table 4.3 lists the results of this test.

Operation SRAM (uncached) SRAM (cached) BRAM

Variable Assignment 36 2 1
Integer Addition 168 9 5
Integer Multiplication 10 5 7
Integer Division 168 43 40
Float Multiplication 168 13 10
Float Division 168 37 35

Table 4.3: Memory Performance Measurement Results in Processor Cycles using Hard-
ware Multiplication and Division and Floating Point Unit

This test shows a signi�cant improved performance of the calculations, when using
the hardware Multiplication, Division and FPUs. However, both bootloaders were
compiled using only the hardware Division Unit, but no hardware Multiplication and
FPU. This combination may cause di�culties and needs to be further investigated
before being integrated in a future software. As multiplications and divisions are only
used for timestamp conversion and CAN usage calculation, the impact of these issues
is low.
Both of these tests showed that the two MicroBlaze Microcontrollers can o�er a much
higher performance than it is currently used. As both capabilities were discovered after
the design freeze of the software and require more testing, the recommendation is to
include them in a already prepared future software update.

4.10.2 Boot Timing Issues

The analysis of the current architecture revealed complicated timing dependencies be-
tween the two MicroBlaze Microcontrollers. If not properly adjusted, the two Mi-
crocontrollers run into interferences during the boot process and runtime. Therefore,
several sleep commands were included in the code by Stock Flight Systems. As new
functionalities or an enhanced system performance change this timing scheme, it has
to be carefully readjusted.

36

4.10 Findings

4.10.3 CAN Bus Error Handling

Robert Bosch GmbH developed the CAN Bus in 1983 as a two wired serial bus with
symmetrical signal transmission. Based on this protocol, Stock Flight Systems de-
veloped CANaerospace for aeronautical applications in 1998. This higher-layer CAN
protocol is used for SOFIA's CAN communication.
According to the CAN protocol ([4], [5]), each CAN controller must have two error
counters: a Transmit Error Counter (TEC) and a Receive Error Counter (REC). In
case any bus participant detects an error, a special formatted error message (Error
Frame) will be sent to the other participants. The reception of an Error Frame leads
to the incrementation of the error counters following speci�c rules. If a message was
successfully transmitted or received, the corresponding error counter is decremented.
If any error counter exceeds the limit of 127, the CAN controller switches to the mode
"Error Passive". This can be detected and signalized to the user by the continuous
Built-In Test. A recovery from this mode is possible by several successfully received
messages.
In case any error counter exceeds the limit of 255, the controller switches to the "Bus
O�" mode and therefore detaches from the bus. An automatic recovery from this mode
is not speci�ed, as the controller is fully disconnected from the bus. Besides a power
cycle of the controller, a recovery sequence has to be initiated by the host which is in
this case MicroBlaze 0. The data sheet of the used Bosch C_CAN controller states:
"If the device goes buso�, it will set Init of its own accord, stopping all bus activities.
Once Init has been cleared by the CPU, the device will then wait for 129 occurrences
of Bus Idle (129 * 11 consecutive recessive bits) before resuming normal operations.
At the end of the buso� recovery sequence, the Error Management Counters will be
reset" [17].
This means that the Init bit in the status register must be actively reset to initiate the
recovery sequence, if MicroBlaze 0 detects the bus detachment.
The ANPA software version 1.6 by Stock Flight Systems detected the switch to "Bus
O�" within an Interrupt Service Routine which was triggered by the status change.
Within this ISR, not only the init bit was reset, but also the complete controller
recon�gured, leading to another status change which therefore triggered the ISR for a
second time. This process repeated until the C_CAN controller switched back to the
nominal operation mode.
The current approach to initiate the recovery sequence didn't lead always to a successful
recovery of the controller and therefore left the Annunciator Panel without commu-
nication. The newly developed software handles the bus o� situation di�erently: the
continuous Built-In Test checks the C_CAN controller status and detects the bus de-
tachment. If this situation is detected, an error message is displayed to inform the
user. Additionally, the routine for performing error countermeasures resets the init bit
in the controller's status register every 10 seconds to initiate its recovery.

37

5 Conclusion

The development of the new Annunciator Panel software 2.0 was successful. All re-
quirements were implemented and tested. Subsequently, the software was accepted by
NASA QA and successfully installed on the spare units and will be installed on the
aircraft as soon as it returns from its C-check. Furthermore, a deep understanding of
the ANPA system and its limitations could be gained and documented. Based on this
detailed knowledge of the hard- and software, future updates can be developed.
Two performance issues of the current system were solved during the development of
the new software. By caching the display application, the performance of the Display
application could be increased by a factor of 18. Additionally, the activation of hard-
ware arithmetic units again enhanced the system performance. By changing the CAN
Bus recovery mechanism, the reliability of the system was improved signi�cantly, as a
power cycle of the MCP causes a bus detachment of the ANPA.
A set of documents was generated during the design process as part of the acceptance
package:

� Project Plan [7]

� Concept of Operation [6]

� System Requirements [9]

� Software Development & System Description [8]

� Veri�cation & Validation Matrix [12]

� Test Procedure [10]

� Version Description Document [13]

� User Manual [11]

5.1 Future Updates & Upgrades

Performance

As mentioned in Section 4.10.1, due to the slow connection of the SRAM, the current
FPGA design of the ANPA is causing a performance bottleneck of the applications. By
moving the program code of the display application to a cached region of the SRAM,

39

5 Conclusion

the overall performance of the Annunciator Panel could be increased by a factor of
about 18.
A second possibility is to execute both applications from the BRAM, which would
increase the system's performance by another factor of 2. However, this would require
increasing the size of available BRAM, in order to �t both applications. Currently, the
FPGA bitstream is limiting the available BRAM to 32 KB for MicroBlaze 0 and 8 KB
for MicroBlaze 1. Theoretically, the available BRAM of the used Spartan 3 FPGA is
216 KB. This means, that besides the already to the two MicroBlazes assigned BRAM
and the BRAM used for the SRAM cache, there is still 144 KB of BRAM unused. This
unused BRAM could be assigned to the two CPUs in a new FPGA bitstream.
Additional performance could be gained by con�guring the applications to use the
hardware multiplication and �oating point units.

Additional Functionalities

Only a few Housekeeping Parameters are currently displayed on the two Housekeeping
Pages. As there are many hundred values available in the MCP, more values could be
displayed on new Housekeeping Pages.
A menu structure could make use of the ANPA's buttons and rotary encoder to display
more and complex content, as demonstrated in a prototype version created by Manuel
Heck.

5.2 Alternative Systems

The current Annunciator Panel system is based on hardware from the year 2000. The
used FPGA o�ers limited possibilities for design upgrades as its logic cells are nearly
completely used. Additionally, the DCU-Lx o�ers only the terminal mode for drawing
and printing to the screen which is very limited in its possibilities and its connection
to MicroBlaze 1. Due to the divided hardware design of the ANPA, upgrades of the
system are very limited, as each hardware was specialized on its task. By simplifying
this divided architecture to a single processor FPGA design, the available resources
can be used more e�ective and timing issues could be avoided.
In order to further improve and develop the permanent annunciation system to a system
that can gradually replace the DCC laptop with its temporary status, a hardware
upgrade is highly advisable. More computing power enables displaying costly graphical
indicators for hundreds of Housekeeping parameters o�ered by the TA. Furthermore,
the ANPA could be evolved to a tool for controlling the telescope independently from
the MCCS and the DCC.
A System on a Chip (SoC) like the Raspberry Pi in combination with a CAN breakout
board and a touchscreen display could o�er similar capabilities as the current ANPA.
The Raspberry Pi o�ers enough computing power and is well maintained and widely
used

40

Glossary

Application A computer program, which is designed to run sev-
eral tasks in order to bene�t the user, is called an
application. In this thesis, the term application is
used for the two top level programs (CAN and Dis-
play) executed on the Annunciator Panel

Bootloader A bootloader is a small computer program, which
initializes or loads a bigger software or operating sys-
tem.

Bosch C_CAN Controller A CAN controller IP Core developed and distributed
by Robert Bosch GmbH.

Building Building describes the process of generating an ex-
ecutable �le from C code. In the beginning of the
build process, the code is analyzed for lexical, syn-
tactic and semantic correctness. This following, the
code is optimized and then translated by a compiler
to machine understandable object �les. Finally, a
linker combines the di�erent object �les to a single
executable �le. This process is usually done by the
GNU tool GCC.

CANaerospace CANaerospace is a higher layer CAN protocoll. It is
adapted to the concept of integrated modular avion-
ics in airplanes.

DCU-Lx The Display Control Unit-Lx is a display controller
application by F&S Elektronik Systeme running on
a PicoMOD computer.

Flash Memory A Flash Memory is a non volantile memory, which
can be electonically written and erased. It is used for
storing data permanently.

Flashing Flashing describes the process of writing a new
�rmware version to a non volatile memory of an elec-
tronic device.

41

Glossary

FPGA A Field Programmable Gate Array (FPGA) "is an
integrated circuit that can be customized for a spe-
ci�c application. Unlike traditional CPUs, FGPAs
are "�eld-programmable", meaning they can be con-
�gured by the user after manufacturing. FPGAs con-
tain programmable logic blocks that can be wired in
di�erent con�gurations. These blocks create a phys-
ical array of logic gates that can be used to perform
di�erent operations". [20]

IP Core An Intellecutal Property (IP) Core is a reusable chip
or system design, which can be purchased for inte-
gration in an own system. IP Cores for FPGAs are
written in Hardware Description Language (HDL)

Linker Script A linker script is written in the linker command lan-
guage and controls the placement of the created as-
sembly code in the memory. It is executed by the
linker during the Build Process.

Make�le A make�le is a �le, containing rules for building a
program. This includes the declaration of the source
�le and library paths, as well as the names of the
compiler and linker executable. The make�le is read
by the build automation tool make, which automati-
cally invokes the di�erent stages of the build process.

MicroBlaze A MicroBlaze is a Microcontroller IP Core, de�ned
by Hardware Description Language (HDL). It can be
impemented in FPGAs of the company Xilinx.

Microcontroller A processor containing not only arithmetic units,
but also peripherial interfaces like General Purpose
Inputs and Outputs (GPIO), is called a microcon-
troller.

PicoMOD A PicoMOD is a credit card sized single circuit board
computer with an ARM based processor by F & S
Elektronic Systems.

SRD A S-Record (.srd) �le contains executable, ascii-
encoded binary code as combination of memory ad-
dress and data package.

42

Bibliography

[1] DLR. About SOFIA. 2018. url: http://www.dlr.de/dlr/desktopdefault.
aspx/tabid-10465/706_read-264/#/gallery/285 (visited on 01/04/2018).

[2] F & S Elektronik Systeme GmbH. DCU-Lx First Steps. Dec. 22, 1999.

[3] Gehrz, R. D.; Becklin, E. E. The Stratospheric Observatory for Infrared Astron-
omy (SOFIA). 2008. doi: 10.1117/12.790973. url: https://doi.org/10.
1117/12.790973.

[4] Road vehicles � Controller area network (CAN) � Part 1: Data link layer and
physical signalling. Standard. Geneva, CH: International Organization for Stan-
dardization, Dec. 2015.

[5] Road vehicles � Controller area network (CAN) � Part 2: High-speed medium ac-
cess unit. Standard. Geneva, CH: International Organization for Standardization,
Dec. 2016.

[6] Klass, L. ANPA2 - Concept of Operations. Tech. rep. SOF-DSI-PLA-5364.1-0002.
DSI, 2018.

[7] Klass, L. ANPA2 - Project Plan. Tech. rep. SOF-DSI-REP-5364.1-0001. DSI,
2018.

[8] Klass, L. ANPA2 - Software Development and System Description. Tech. rep.
SOF-DSI-SDD-5364.1-0001. DSI, 2018.

[9] Klass, L. ANPA2 - System Requirements Speci�cations. Tech. rep. SOF-DSI-SPE-
5364.1-0001. DSI, 2018.

[10] Klass, L. ANPA2 - Test Procedure. Tech. rep. SOF-DSI-PRO-5364.1-0001. DSI,
2018.

[11] Klass, L. ANPA2 - User Manual. Tech. rep. SOF-DSI-MAN-5364.1-0001. DSI,
2018.

[12] Klass, L. ANPA2 - Veri�cation & Validation Matrix. Tech. rep. SOF-DSI-PLA-
5364.1-0001. DSI, 2018.

[13] Klass, L. ANPA2 - Version Description Document. Tech. rep. SOF-DSI-VDD-
5364.1-0001. DSI, 2018.

[14] Krabbe, A. Becoming reality: the SOFIA telescope. 2003. doi: 10.1117/12.
458647. url: https://doi.org/10.1117/12.458647.

[15] Kunz, N. The Making of SOFIA. Tech. rep. NASA, 2016.

43

http://www.dlr.de/dlr/desktopdefault.aspx/tabid-10465/706_read-264/#/gallery/285
http://www.dlr.de/dlr/desktopdefault.aspx/tabid-10465/706_read-264/#/gallery/285
https://doi.org/10.1117/12.790973
https://doi.org/10.1117/12.790973
https://doi.org/10.1117/12.790973
https://doi.org/10.1117/12.458647
https://doi.org/10.1117/12.458647
https://doi.org/10.1117/12.458647

Bibliography

[16] NASA. SOFIA to Make Advance Observations of Next New Horizons Flyby Ob-
ject. July 9, 2017. url: https://www.nasa.gov/feature/sofia-to-make-
advance-observations-of-next-new-horizons-flyby-object (visited on
05/07/2018).

[17] Robert Bosch GmbH. C_CAN User's Manual. June 6, 2000. url: http://
www.keil.com/dd/docs/datashts/silabs/boschcan_ug.pdf (visited on
04/17/2018).

[18] Stock, M. SOFIA CANaerospace Network System Description. SOF-DSI-ICD-
5350.0-0001. Stock Flight Systems, 2014.

[19] Temi, P. et al. �The SOFIA Observatory at the Start of Routine Science Op-
erations: Mission Capabilities and Performance�. In: The Astrophysical Journal
Supplement Series 212.2 (2014), p. 24. url: http://stacks.iop.org/0067-
0049/212/i=2/a=24.

[20] The Tech Terms Computer Dictionary. FPGA De�nition. 2018. url: https:
//techterms.com/definition/fpga (visited on 05/01/2018).

[21] USRA. About SOFIA. 2018. url: https://www.sofia.usra.edu/public/
about-sofia/ (visited on 01/04/2018).

[22] Xilinx. LogiCORE IP Processor Local Bus (PLB) Product Speci�cation. 2010.
url: https://www.xilinx.com/support/documentation/ip_documentation/
plb_v46.pdf (visited on 04/06/2018).

[23] Xilinx. Platform Flash In-System Programmable Con�guration PROMs. June 6,
2016. url: https://www.xilinx.com/support/documentation/data_sheets/
ds123.pdf (visited on 04/17/2018).

[24] Xilinx. Spartan-3 FPGA Family Data Sheet. June 27, 2013. url: https://www.
xilinx.com/support/documentation/data_sheets/ds099.pdf (visited on
04/17/2018).

[25] Zeile, O. DSI Top Level Design Process. Tech. rep. SOF-DSI-QM-2000.0-0000
R00. DSI, June 26, 2012.

44

https://www.nasa.gov/feature/sofia-to-make-advance-observations-of-next-new-horizons-flyby-object
https://www.nasa.gov/feature/sofia-to-make-advance-observations-of-next-new-horizons-flyby-object
http://www.keil.com/dd/docs/datashts/silabs/boschcan_ug.pdf
http://www.keil.com/dd/docs/datashts/silabs/boschcan_ug.pdf
http://stacks.iop.org/0067-0049/212/i=2/a=24
http://stacks.iop.org/0067-0049/212/i=2/a=24
https://techterms.com/definition/fpga
https://techterms.com/definition/fpga
https://www.sofia.usra.edu/public/about-sofia/
https://www.sofia.usra.edu/public/about-sofia/
https://www.xilinx.com/support/documentation/ip_documentation/plb_v46.pdf
https://www.xilinx.com/support/documentation/ip_documentation/plb_v46.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds123.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds123.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds099.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds099.pdf

	Preface
	Abstract
	Zusammenfassung
	Acronyms
	Introduction
	SOFIA
	Telescope Assembly
	Telescope Optics
	Telescope Software and Electronics
	Annunciator Panel

	System Analysis
	Hardware
	Display and GPU
	Spartan-3 FPGA
	Periphery

	Software
	MicroBlaze Bootloaders
	CAN Application
	Display Application

	Preparatory Work
	Software Design Process
	Source Code Repository
	MicroBlaze Toolchain
	Makefile & Linker Script
	SD-Card Bootloader

	Implementation & Findings
	State Model of the new Software
	Annunciation Colors
	Acknowledge & Refresh
	UTC Clock
	Housekeeping Page
	Error Handling
	Continuous Built-In Test
	Built-In Test on Demand
	Task Scheduler
	Findings
	System Performance
	Boot Timing Issues
	CAN Bus Problems

	Conclusion
	Future Updates & Upgrades
	Alternative Systems

	Glossary
	Bibliography

