
Entwicklung eines modularen
Belichtungszeitrechners für ballonbasierte Teleskope

Development of a modular exposure time calculator
for balloon-based telescopes

Masterarbeit von
B. Sc. Lukas Klass

IRS-20-S-081

Betreuer:
Prof. Dr. rer. nat. Alfred Krabbe

Dipl.-Ing. Philipp Maier

Institut für Raumfahrtsysteme, Universität Stuttgart
November 2020

Contents

Abstract iii

Zusammenfassung v

Acronyms vii

Symbols ix

1. Introduction 1
1.1. ESBO . 2
1.2. Exposure Time Calculator & Requirements 3
1.3. Thesis Overview . 4

2. Theory 5
2.1. Fundamentals . 5
2.2. Radiation Sources . 7
2.3. Radiative Transfer . 8
2.4. Radiation Detection . 10

3. Preparatory Work 25
3.1. Python . 25
3.2. Project Structure . 25
3.3. Tools . 26
3.4. Python Packages . 27

4. Implementation 29
4.1. Software Architecture . 29
4.2. Numerical Approaches . 33
4.3. Configuration File . 39
4.4. Output . 40
4.5. Documentation . 41
4.6. CI/CD Pipeline . 42

5. Software Verification & Validation 43
5.1. Verification Methods . 43
5.2. Verification Results . 44

6. Analysis of two Scientific Applications 45
6.1. SOFIA FORECAST - Influence of Mirror Coatings on Integration Time . . . 45
6.2. ESBO Heterodyne Instrument - HCl+ absorption towards W31C 49

i

Contents

7. Conclusion 53
7.1. Future Upgrades & Extensions . 53

Appendix A. Standard photometric systems 55

Appendix B. Derivation of ExoSim 57

Appendix C. Approximation Error for the Obstructed Extended Source 59

Appendix D. Class Diagram 61

Appendix E. Verification Results 63

Appendix F. Science Case Configuration Files 65
F.1. FORECAST Configuration File . 65
F.2. HIFI Configuration File . 67
F.3. ESBO Configuration File . 69

Bibliography 71

ii

Abstract

The development of ESBO, the planned European Stratospheric Balloon Observatory, requires
a tool for the calculation of the observatory’s potential performance. This tool is intended to
support the selection of the best possible configuration of telescope and instruments as well
as the optimal components. A key indicator for an observatory’s performance is the exposure
time required for a given signal-to-noise ratio. Later, during the operation of the observatory,
the required exposure time is of importance for planning the scientific observations.

For this reason, a modular exposure time calculator, which allows to calculate the performance
of the observatory by using different components will be developed in this master thesis. Fur-
thermore, this software can be later used by scientists to calculate the necessary observation
time for their science cases. Therefore the exposure time calculator offers an extensive library
of components that can be configured and combined via a configuration file to model the op-
tical path. Inter alia, this library contains different sources like black body radiators, optical
components like the atmosphere, mirrors or lenses, and two types of detectors. A special focus
of this thesis is the modeling and implementation of a heterodyne detector that can be used
for high spectral resolution line observations.
At first, the physical foundation for these calculations is developed by deriving the appropriate
equations.
An object-oriented software architecture ensures that future components can be easily added.
All available components as well as the associated parameters, the code and the corresponding
interfaces are explained in detail in a documentation.
To ensure the correct operation of the exposure time calculator, individual module tests are
implemented during the development phase. After completion, the entire software is then
fully verified using other exposure time calculators and hand calculations.
Finally, the developed exposure time calculator is applied to two science cases to validate the
maturity of the software. First, an observation with SOFIA/FORECAST is simulated and
compared to the SOFIA exposure time calculator. The same simulation is then carried out
with improved mirror parameters to determine their influence on the required exposure time.
In a second science case, the observation of an absorption line of HCl+ towards W31C with
ESBO and a heterodyne instrument, as it was already performed in 2012 with Herschel/HIFI,
is simulated and compared. It is shown that ESBO can reach almost the performance of the
Herschel space observatory.

iii

Zusammenfassung

Für die Entwicklung von ESBO, dem geplanten European Stratospheric Balloon Observatory,
wird ein Werkzeug für die Berechnung der potentiellen Leistungsfähigkeit des Observatoriums
benötigt. Dieses soll die Auswahl der bestmöglichen Konfiguration von Teleskop und Instru-
mente sowie der optimalen Komponenten unterstützen. Eine gute Kenngröße für die Leis-
tungsfähigkeit eines Observatoriums stellt die für ein bestimmtes Signal-Rausch-Verhältnis
notwendige Belichtungszeit dar. Diese ist auch später während des Betriebs des Observatori-
ums für die Planung der wissenschaftlichen Beobachtungen von Bedeutung.

Aus diesem Grund wird im Rahmen dieser Masterarbeit ein modularer Belichtungszeitrech-
ner entwickelt, der es ermöglicht, die Leistungsfähigkeit des Observatoriums unter der Ver-
wendung verschiedener Komponenten zu berechnen. Darüber hinaus kann dieser später
von Wissenschaftlern verwendet werden, um die notwendige Beobachtungszeit für ihre wis-
senschaftlichen Fragestellungen zu berechnen. Hierfür bietet der Belichtungszeitrechner eine
umfangreiche Bibliothek an Komponenten. Über eine Konfigurationsdatei können diese kon-
figuriert und kombiniert werden, um damit den optischen Pfad nachzubilden. Unter an-
derem beinhaltet diese Bibliothek verschiedene Quellen wie Schwarzkörperstrahler, optische
Komponenten wie die Atmosphäre, Spiegel oder Linsen, sowie zwei Arten von Detektoren.
Ein besonderer Schwerpunkt der Arbeit stellt die Modellierung und Implementierung eines
Heterodyn-Instruments dar, das für spektrale hochauflösende Linien-Beobachtungen verwen-
det werden kann.
Zunächst wird deshalb die hierfür notwendigen physikalische Grundlage für die Berechnungen
geschaffen indem die entsprechenden Zusammenhänge hergeleitet werden.
Eine objekt-orientierte Architektur der Software stellt sicher, dass auch später weitere Kom-
ponenten hinzugefügt werden können. In einer Dokumentation sind sowohl alle verfügbaren
Komponenten als auch die zugehörigen Parameter sowie der Code und die entsprechenden
Schnittstellen ausführlich erläutert.
Um die korrekte Funktion des Belichtungszeitrechners zu gewährleisten, werden bereits wäh-
rend der Entwicklung einzelne Modultests implementiert. Nach der Fertigstellung wird dann
die gesamte Software mithilfe anderer Belichtungszeitrechner und Handrechnungen vollständig
verifiziert.
Abschließend wird der fertige Belichtungszeitrechner auf zwei wissenschaftliche Fragestel-
lungen angewendet, um damit die Reife der Software zu validieren. Zunächst wird eine
Beobachtung mit SOFIA/FORECAST simuliert und mit dem SOFIA Belichtungszeitrech-
ner verglichen. Dieselbe Simulation wird anschließend mit verbesserten Spiegelparametern
durchgeführt um deren Einfluss auf die Benötigte Belichtungszeit zu bestimmen.
In einer zweiten Fragestellung wird die Beobachtung einer Absorptionslinie von HCl+ mit
ESBO und einem Heterodyn-Instrument, wie sie bereits 2012 mit Herschel/HIFI durchgeführt
wurde, simuliert und verglichen. Es zeigt sich, dass ESBO beinahe die Leistungsfähigkeit des
Weltraumobservatoriums Herschel erreichen kann.

v

Acronyms

AETC Advanced Exposure Time Calculator
API Application Programming Interface
ASCII American Standard Code for Information Interchange
CCD charge coupled device
CI/CD continuous integration / continuous development
CSV comma separated values
DLR Deutsches Zentrum für Luft- und Raumfahrt
DSB dual sideband
DSI Deutsches SOFIA Institut
EM electromagnetic
ESBO European Stratospheric Balloon Observatory
ESBO-DS European Stratospheric Balloon Observatory – De-

sign Study
ETC exposure time calculator
FIR far-infrared
FITS Flexible Image Transport System
FORECAST Faint Object Infrared Camera for the SOFIA Tele-

scope
FOV field of view
FWHM full width half maximum
GREAT German Receiver for Astronomy at Terahertz Fre-

quencies
GUI graphical user interface
H.O.T. higher order terms
HIFI Heterodyne Instrument for the Far Infrared
HSA Herschel Science Archive
HTML Hypertext Markup Language
IF intermediate frequency
JSON JavaScript Object Notation
LO local oscillator
LSB lower sideband
NIR near-infrared
OOP object-oriented programming
PACS Photodetector Array Camera and Spectrometer
PI principle investigator
PRISMAS Probing InterStellar Molecules with Absorption line

Studies
PSD power spectral density
PSF point spread function

vii

Acronyms

RMS root mean square
SITE SOFIA Instrument Time Estimator
SNR signal-to-noise ratio
SOFIA Stratospheric Observatory for Infrared Astronomy
SSB single sideband
STUDIO Stratospheric Ultraviolet Demonstrator of an Imaging

Observatory
UML Unified Modeling Language
USB upper sideband
UV ultraviolet
XML Extensible Markup Language

viii

Symbols

Symbol Description Unit
A Area m2

Aap Aperture area m2

Aeff Effective antenna area m2

Aobs Obstructor area m2

c Speed of light m s−1

Dap Aperture diameter m
Dphot Photometric aperture diameter m
e Euler’s number -
E Radiant flux density W m−2

Eν Spectral flux density W m−2 Hz−1

EE Percentage of encircled energy %
f Telescope’s focal length m
F Antenna pattern -
h Planck constant J s
I PSF intensity -
ID Dark current e- s−1

kB Boltzmann constant J K−1

l Pixel size m
LΩ Radiance W m−2 sr−1

LΩ,ν Spectral radiance W m−2 sr−1 Hz−1

m Apparent magnitude mag
nosf Oversampling factor -
N Telescope’s focal number -
Ne− Number of electrons e-

Npix Number of pixels pixel
Nphot Number of photons photon
Nphot,ν Spectral number of photons photon Hz−1

o Quadratic aperture obstruction ratio -
P Power W
Pν Power spectral density W Hz−1

Q Radiant energy J
QE Quantum efficiency e- photon−1

QEν Spectral quantum efficiency e- photon−1 Hz−1

r Line of sight m
SNR Signal-to-noise ratio -
S Surface brightness mag/sr2

t Time s
texp Exposure time s

ix

Symbols

Symbol Description Unit
T Temperature K
TA Antenna temperature K
Tbg Background temperature K
TB Brightness temperature K
Tmb Main beam temperature K
Trec Receiver temperature K
∆Trms RMS antenna temperature K
Tsys System temperature K
α Absorption coefficient -
αν Spectral absorption coefficient Hz−1

ηap Aperture efficiency -
ηfss Forwards scattering efficiency -
ηmb Main beam efficiency -
θ Angle of incidence rad
θ̄ Reduced observation angle rad
κ Back-end degradation factor -
λ Wavelength m
ν Frequency Hz
∆ν Bandwidth Hz
ρ Reflection coefficient -
ρν Spectral reflection coefficient Hz−1

σjit Jitter standard deviation arcsecond

σR CCD readout noise
√
e- pixel−1

τ Transmission coefficient -
τν Spectral transmission coefficient Hz−1

Φ Radiant flux W
Φν Spectral flux W Hz−1

Ω Solid angle sr
ΩA Antenna solid angle sr
Ωap Aperture solid angle sr
Ωmb Main beam solid angle sr
Ωsrc Source solid angle sr

x

1. Introduction

Astronomy, the study of celestial objects and phenomena, is largely dependent on the obser-
vation of electromagnetic radiation1 emitted by the objects of interest. Unfortunately, wide
ranges of the spectrum like the far-infrared (FIR) or ultraviolet (UV) range are partially
or even completely blocked by atomic and molecular transitions within the atmosphere, e.g.
the rotational transitions of the water molecule in the FIR. Only narrow spectral windows
like the visible range are open and allow ground-based observations. "The answers to many
fundamental, yet still unresolved astrophysical questions, such as those about the detailed
mechanisms of astronomical engines, the secrets of exoplanet atmospheres, or the distribu-
tion of water in our own solar system, closely linked with questions about its own formation
and evolution, thus lay obscured behind this atmospheric curtain"[1]. This circumstance is
presented in the upper diagram of figure 1.1, which shows the atmospheric transmission at
Mauna Kea in Hawaii in a wavelength range from 1µm to 1000µm.

Figure 1.1.: The typical atmospheric transmission at a SOFIA observation altitude of 45,000
feet as compared to the transmission on a good night at Mauna Kea (13,800 ft.
MSL)[2]. A clear improvement of the atmospheric transmission in the strato-
sphere can be observed for wavelengths larger than 1 µm.

The effects of the atmospheric extinction can be circumvented by moving to space-based ob-
servatories like Herschel Space Telescope, Hubble Space Telescope or James Webb Space Tele-
scope. Space-based telescopes can observe the whole unobscured electromagnetic spectrum

1Besides the observation of electromagnetic radiation, there exist particle astronomy and gravitational wave
astronomy which is emerging as a new branch of observational astronomy.

1

1. Introduction

but have two major disadvantages: First of all, launching a telescope into space is a highly
complicated and very expensive challenge. Due to the limitations on the payload size of rock-
ets, large telescopes need sophisticated folding mechanisms. Secondly, once the space-based
observatory is launched, it may, depending on the orbit, not be accessible for maintenance or
hardware upgrades. Especially cryogenic coolant fluids (see the Herschel Space Observatory)
or fuel cannot be refilled.
Airborne telescopes compromise between the observable spectral range and the maintainability
as well as the costs of the mission. The lower diagram of figure 1.1 shows the atmospheric
transmission at 13.7 km, a typical flight altitude for aircraft-based observatories which is much
better compared to the atmospheric transmission on Mauna Kea. Aircraft-based observatories
like Stratospheric Observatory for Infrared Astronomy (SOFIA) typically fly 10 – 12 hours
allowing daily maintenance. However, the costs per flight are extremely high2.
In contrast, stratospheric balloon observatories offer a flight duration in the order of weeks
or even months, resulting in lower costs per observation hour. As stratospheric balloons
can reach an altitude of up to 40 km, they allow observations with less perturbation as they
leave over 99% of the atmospheric mass behind[3]. Furthermore larger telescopes with higher
angular resolutions can be used for the observations as no fuselage is limiting the telescope
size as compared to aircraft-based observatories. Nevertheless, they can be easily maintained
and upgraded during the ground-time.

1.1. ESBO

After the retirement of Herschel due to a depletion of cryogenic coolant fluids, SOFIA is
currently the only active far-infrared observatory with an expected lifetime of 20 years un-
til 2030[2]. The planned European Stratospheric Balloon Observatory aims at developing a
community-accessible stratospheric balloon observatory for the FIR band to extend the land-
scape of FIR observatories. The "concept focuses on reusable platforms with exchangeable
instruments and telescopes performing regular flights"[1].
The design study ESBO-DS is continuing the project ORISON (innOvative Research Infras-
tructure based on Stratospheric balloONs) that studied the general feasibility of a balloon-
based observatory and assessed the interests and scientific needs within the astronomical
community. In addition to three flight systems, all necessary infrastructure to operate a
stratospheric balloon observatory like proposal tools, ground systems and data pipelines are
being conceptually developed.
To show the maturity of ESBO-DS , the prototype Stratospheric Ultraviolet Demonstrator
of an Imaging Observatory (STUDIO) with a 0.5m telescope will be built and launched in
2022. STUDIO features a UV imaging instrument with a field of view (FOV) of 30’ x 30’ for
observations in the 200 nm to 300 nm wavelength regime. The development is motivated by
two science cases: First of all, hot compact stars can be easily detected in the UV band because
their emitted flux is increasing towards the UV band. In contrast, the flux of other stars is
decreasing because of their lower temperature. The observation of hot compact stars like
white dwarfs is of great importance for astroseismic models. Binary systems of white dwarfs
emit strong gravitational waves and can be used as calibration sources by future gravitational
wave observatories like eLISA.

2SOFIA costs about 1,000,000 $ per flight.

2

1.2. Exposure Time Calculator & Requirements

Secondly, ESBO-DS allows the continued monitoring of the strong emission line of ionized
magnesium (Mg II) during flares of red dwarf stars. These flares result from reconfigura-
tions of the stellar magnetic field and play an important role in the evolution of planets and
other circumstellar matter. Systematic multi-wavelength monitoring of flare stars and the
determination of the flare’s occurrence rate promises new insights on the physics of these
outbursts[1].
By studying concepts for larger following platforms, ESBO-DS shall pave the way towards
European Stratospheric Balloon Observatory (ESBO). Following STUDIO, ESBO shall pro-
vide a 1.5m NIR telescope and a 5m FIR telescope platform in the long term. All platforms
feature exchangeable science instruments for community-based access. Further down the road,
the platforms shall be opened to allow the development and usage of principle investigator
(PI) instruments.
The project ESBO-DS is financed by the European Union’s Horizon 2020 Programme and
carried out by a consortium consisting of the Institute of Space Systems at the University
of Stuttgart, the Swedish Space Corporation, the Institute for Astronomy and Astrophysics
at the University of Tübingen, the Max Planck Institute for extraterrestrial Physics and the
Instituto de Astrofísica de Andalucía[4].

1.2. Exposure Time Calculator & Requirements

During the development of ESBO-DS and ESBO, different telescope designs, materials and
observation strategies are under consideration. The decision for a specific component requires
an estimate of the future observatory’s performance given the component’s properties. A mod-
ular end-to-end simulation tool of an observatory can standardize and significantly accelerate
this decision process.
Once a telescope design is selected and built, the European Stratospheric Balloon Observatory
may start its operational life. Astronomers are then allowed to submit proposals for observa-
tions. These proposals must include, inter alia, a detailed explanation of the scientific gain as
well as an estimate for the necessary observation time. To assess the necessary observation
time, a tool to simulate the observation of the specified astronomical target and observation
conditions using the ESBO platform is needed.
In a later stage of ESBO’s operational lifetime, PI-instruments will be used besides the facility
instruments. Again, a simulation tool is required to enable the developers of PI-instruments
to investigate the performance of their detector concepts for a fixed telescope design.
This said the requirements on a new simulation tool have been collected and documented in
a Software Requirements Specification[5]. The most important requirements are

• Configurability to allow flexible modeling of complex science cases or telescope setups.

• Modularity by object-oriented programming to enable the integration of future exten-
sions.

• Library of components including:

– Targets: black body target, target from a file of spectral flux densities

– Optical components: cosmic background (black body), arbitrary stray light,
atmosphere, mirror, lens, filter, beam splitter

3

1. Introduction

– Detector: imaging detector, heterodyne detector

• Disturbances like the telescope’s point spread function (PSF) or pointing jitter shall
be considered

An exposure time calculator (ETC), a software tool used to calculate the required exposure
time to reach a predefined signal-to-noise ratio (SNR) with an observatory given an astro-
nomical target and observation conditions, can satisfy all of the aforementioned use cases
and requirements. In detail, the calculations of an ETC start by modeling the emission of
electromagnetic radiation by an astronomical target as well as possible background emission.
Subsequently, the transfer of the emitted radiation through several optical components like
galactic dust clouds or atmospheric components to the telescope is simulated. Of course, the
telescope including all optical components like mirrors, lenses or filters is modeled as well to
improve the precision of the simulation. Finally, the detection process and the corresponding
statistical effects are simulated resulting in either a value for the necessary exposure time, a
value for the reached SNR or a value for the limiting sensitivity of the telescope. This process
is also presented in figure 1.2.

Target
Cosmic
Back-
ground

Atmospheric
Emission

&
Transmission

Mirror
Emission

&
Reflection

Mirror
Emission

&
Reflection

Filter
Emission

&
Transmission

Imager

Source Environment Telescope Detector

Figure 1.2.: This illustration shows the concept for a modular exposure time calculator. The
software provides a library of different components that can be arranged to model
the radiation’s path from the source to the detector.

Scientific observations require a high SNR which shall be reached in a preferably short expo-
sure time. This said an exposure time calculator is the right tool to estimate the performance
of a specific observation setup. Therefore a highly modular exposure time calculator (in the
following called ESBO-ETC) was developed during this master thesis.

1.3. Thesis Overview

This master thesis is divided into several chapters, starting with some important physical ba-
sics on the transfer and detection of radiation in chapter one. This is followed by a chapter on
the necessary preparatory work to implement the code for the exposure time calculator. The
fourth chapter describes the software architecture, numerical approaches, input and output
of the software as well as the documentation in detail. Chapter five continues with the veri-
fication of the software using other approved ETCs and some hand calculations. Finally, the
ETC is applied to two science cases to validate the software. First, the influence of different
mirror coatings on the integration time is assessed for SOFIA/FORECAST. Afterward, the
performance of the future ESBO telescope concept is investigated for a line observation with
a heterodyne instrument. The thesis is closed by a final discussion of the results of the work
and an outlook on future improvements.

4

2. Theory

An exposure time calculator models the emission, transfer and detection of radiation from
astronomical objects of interest. The development of an ETC requires a sound understanding
of the physical properties of electromagnetic (EM) radiation, its transfer & detection mecha-
nisms and the statistics of measured signals. These prerequisites are explained in this chapter,
starting with some fundamental units of the EM radiation.

2.1. Fundamentals

The energy of EM radiation is carried by photons, which follow the laws of quantummechanics.
According to the wave-particle duality of quantum mechanics, photons can be described either
as a wave or as a particle. On the one hand, EM radiation can be modeled as perpendicular
electric and magnetic waves propagating with the speed of light c through vacuum. The
derivations for the heterodyne instrument described in section 2.4.2 make use of the light’s
wave nature. On the other hand, electromagnetic radiation can be described as particle
radiation with photons carrying the radiation energy. This theory is used by the derivations
for the imaging detector in section 2.4.1.
EM radiation is emitted by various processes in nature with the thermal emission being
the most prominent one. Every particle or body with a temperature T above 0K emits a
continuous spectrum of electromagnetic radiation following Planck’s law.

LΩ,ν (T) =
2hν3

c2

1

e
hν
kBT − 1

(2.1)

with the Planck constant h, the Boltzmann constant kB and the radiation frequency ν.
Another important process is the emission (and absorption) of discrete EM radiation fre-
quencies (lines) by the transition of quantum states in atoms and molecules. Due to the
uncertainty principle of state lifetime and the thermal velocity distribution, these discrete
lines reveal a natural line width. Each atom and molecule is uniquely identified by its great
abundance of different spectral lines allowing astronomers to deduce the composition of dis-
tant objects by analyzing their spectrum. This mechanism is relevant for both the emission
of the astronomical target as well as for the extinction in the atmosphere for example.
Depending on the problem, several radiometric quantities can be used to characterize sources
and receivers of EM radiation. Each quantity can be defined for a radiation source denoted by
the term radiant or for a receiver indicated by the term irradiant. Furthermore, all following
physical quantities can be defined as spectral quantities analogous by differentiating with
respect to the unit wavelength ∂λ or the unit frequency ∂ν. An index xλ or xν denotes such
a spectral quantity. They can be converted using the identities

5

2. Theory

c = λ · ν (2.2)

xλ = xν ·
c

λ2
= xν ·

ν2

c
.

which arise by equating the two differentials xν = dx
dν and xλ = dx

dλ .

Radiant Flux

First of all, sources and receivers of EM radiation can be characterized by the energy ∂Q
transported per time unit ∂t which gives the radiant flux Φ

Φ =
∂Q

∂t
(2.3)

in units of W. The spectral flux is defined analogous as

Φν =
∂2Q

∂t ∂ν

in units of W
Hz . The radiant flux, as well as the spectral flux, describe the total emitted or

received radiation power

Radiant flux density

The radiant flux density E is defined as the radiant flux per unit area ∂A.

E =
∂Φ

∂A
(2.4)

Eν =
∂2Φ

∂A∂ν

The units of the (spectral) radiosity are W
m2 and W

m2·Hz
respectively. This quantity can be used

to measure the power received by a detector per surface area.

Radiance

The radiance or brightness LΩ is a measure of the spatial and directional strength of a source.
It is defined as the radiant flux ∂Φ emitted or received by any surface per solid angle ∂Ω and
per projected surface area ∂A cos (θ) according to the cosine-law. The index xΩ indicates a
directional quantity.

LΩ =
∂2Φ

∂Ω ∂A cos (θ)
(2.5)

LΩ,ν =
∂3Φ

∂Ω ∂A cos (θ) ∂ν

The units of the (spectral) radiance are given as W
sr·m2 and W

sr·m2·Hz
.

6

2.2. Radiation Sources

Brightness Temperature

The brightness temperature Tb is usually used by radio astronomers to describe the brightness
of sources. As radio astronomers observe in the lower frequency domain, the Rayleigh-Jeans
approximation of Planck’s law holds for hν � kBT , yielding

TB = LΩ,ν ·
c2

2 · kB · ν2
= LΩ,ν ·

λ2

2 · kB
= LΩ,λ ·

λ4

2 · kB · c
(2.6)

using relation (2.2).

Noise Temperature

The noise temperature of a component is used in electronics and radio technology to describe
the level of Johnson-Nyquist noise power introduced by this component. In the Rayleigh-
Jeans approximation, the power spectral density (PSD) Pν of a signal can be expressed as the
temperature T of a resistor with an equal PSD

P

∆ν
= Pν = kBT (2.7)

with the noise bandwidth ∆ν[6] over which the noise power is measured.

2.2. Radiation Sources

Two limiting cases exist for the spatial extend of radiation sources: an infinitesimally small
point source and an extended source which covers at least the full FOV of the telescope (in
the following the term extended source refers to this limiting case). Each case allows the
measurement of a different radiation quantity. "When the emitting region is larger than the
beam the brightness of the region covered by the beam can be measured. [...] However, when
the source is much smaller than the telescope beam its solid angle cannot be determined – we
say that the source is unresolved. As a result we cannot measure its brightness and only the
more limited information, the flux density [...], is available"[6]. Consequently, the spectral flux
density Eν must be used to model point sources and the radiance LΩ,ν for largely extended
sources. Both cases are considered by ESBO-ETC

Black Body

Many astronomical sources resemble a black body radiator with a spectral distribution ac-
cording to Planck’s law (2.1). The brightness of these sources can be described using the
apparent magnitude system. In agreement to the human eye, the magnitude system uses a
logarithmic scale with the brightness of Vega defined as 0.03 mag as reference. The apparent
magnitude of any object is defined as

m = −2.5 · log10

(
E

EV ega

)
. (2.8)

To model a black body radiator with a given apparent magnitude, Planck’s law from equa-
tion (2.1) has to be normalized and scaled to tabulated values of the flux density of a 0 mag

star as shown in table A.1. The spectral band used for this process can be selected based

7

2. Theory

on the wavelength range of interest. Afterward, the spectral quantity is scaled to the desired
apparent magnitude using equation (2.8).
In the case of a point source, the object’s spectral flux density for a given black body tem-
perature T , apparent magnitude m and central band wavelength λ0 can be calculated as

Eν = Eν ,P lanck (T) ·
Eλ,V ega (λ0)

Eλ,P lanck (λ0, T)
· 10−

2
5
·m. (2.9)

In the other case of an extended source, the objects surface brightness S is used for the
calculation of the black body’s radiance

LΩ,ν = LΩ,ν ,P lanck (T) ·
Eλ,V ega (λ0)

LΩλ,P lanck (λ0, T) · 1 sr
· 10−

2
5
·S·1 sr. (2.10)

2.3. Radiative Transfer

An astronomical object emits EM radiation that travels along the line of sight to the telescope
where the radiation is focused by mirrors and lenses onto the focal plane. This radiation is
called the signal radiation or just the signal. The signal passes on this path several different
optical components with different optical properties which may act on the signal as indicated
by the upper flow in figure 2.1. On the one hand, the signal might be attenuated by dust,
gases like the atmosphere, mirrors, lenses, etc. Mathematically, a spectral transmittance τν ,
reflectance ρν or absorption αν coefficient is assigned to each of the aforementioned optical
components with 0 ≤ τν , ρν , αν ≤ 1. The radiance LΩ,ν

′ after the component is then given
as

LΩ,ν
′ = τν · LΩ,ν (2.11)

with the radiance LΩ,ν before the component. This relation holds also for reflection ρν and
the complement of the absorption 1− αν .
On the other hand, the radiation received by the telescope might be enhanced by other ra-
diation sources like the cosmic background, galactic cirrus, atmospheric emission or thermal
emission of the telescope components. All these sources sum up to give the background radia-
tion in contrast to the signal radiation as illustrated in figure 2.1. The background radiation
can be subtracted from the received radiation by observation techniques like chopping or nod-
ding to obtain only the signal radiation[7]. However, it is impossible to remove the noise of
the background radiation as shown in the calculation of the SNR in section 2.4.
Another disturbance mechanism is the obstruction of the telescope’s FOV by structural or op-
tical components like an opposing secondary mirror. The fraction of the aperture obstruction
o can be calculated as the ratio of the obstructing component’s area Aobs and the aperture
area Aap

o =
Aobs
Aap

(2.12)

which follows 0 ≤ o ≤ 1. The radiance LΩ,ν
′ after the obstructing component can be calculated

by

LΩ,ν
′ = o · LΩ,ν . (2.13)

8

2.3. Radiative Transfer

Source Cosmic
Background

Atmospheric
Transmission

Atmospheric
Emission

Signal

Background

Mirror
Reflectivity

Mirror
Emission

Mirror
Reflectivity

Mirror
Emission Detector

Figure 2.1.: Contributions to the signal and background radiation
The signal decreases on its way from the source to the detector while the back-
ground radiation increases due to the thermal emissions of the cosmic background,
the atmosphere and the telescope’s components.

The telescope’s PSF introduces another distortion on the received radiation. Diffraction
coupled with aberrations in the optical components "will cause the image of a perfect point
to be smeared out into a blur spot occupying a finite area of the image plane"[8]. This said
the PSF describes the image of a perfect point source on the focal plane of the telescope. The
point spread function of an arbitrary telescope without taking into account optical aberrations
can be calculated as the Fourier transform of its aperture with the Airy disk being the simplest
case for a circular aperture. The airy disk intensity function Iλ (θ) is given as

Iλ (θ) = I0 ·
(

2J1 (x)

x

)2

(2.14)

with the peak intensity I0, the angle of observation θ, the aperture diameter Dap and the
substitution x = 2π

λ
Dap

2 sin (θ) ≈ 2π
λ
Dap

2 θ. The angular resolution of a telescope can be
determined with the full width half maximum (FWHM) of its PSF.
Obstructing components like an opposing secondary mirror not only reduce the received radi-
ation but also alter the telescope’s aperture and therefore the telescope’s PSF. The airy disk
with a central circular obstruction can be described by

Iλ (θ) =
I0

(1− o)2 ·
(

2J1 (x)

x
− 2
√
oJ1 (

√
ox)

x

)2

. (2.15)

As a result, more energy is diffracted from the central disc into the outer rings as shown
in figure 2.2, leading to a higher FWHM and therefore to a lower angular resolution of the
telescope. The position of the FWHM of the unobstructed airy disk is given by θ = 0.514 · λ

Dap
whereas the position of the FWHM cannot be analytically calculated in the obstructed case.

9

2. Theory

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

Reduced observation angle θ̄ = θ · Dap

λ

In
te
ns
it
y
I

o = 0.0
o = 0.1
o = 0.2
o = 0.3
o = 0.4

Figure 2.2.: Airy disc for different obstruction ratios o
More energy is diffracted from the central disc into the outer rings with an in-
creasing obstruction ratio.

2.4. Radiation Detection

After both the signal and the background radiation reach the focal plane, the electromagnetic
radiation must be measured. Today, astronomers use semiconducting detectors to convert
the incident radiation into an electrical signal which can be further processed by computers.
Two types of detectors are available in the first version of ESBO-ETC: an imaging detector
which detects the spatial distribution of the radiation and a heterodyne detector to detect
the spectral distribution. Both detector types, their basic principles and the calculation of
the SNR from the received signal and background radiation are explained in the following.

2.4.1. Imaging Detector

An Imaging detector measures the spatial distribution of the EM radiation. Hence the detector
integrates over the whole detectable wavelength regime, the measurement is spectrally not
resolved. Typical examples for imaging detectors are CCD sensors and the more modern but
in astronomy less prominent CMOS sensors.
An imaging detector consists of an array of millions of pixels. The size of these pixels defines
the spatial resolution of the sensor. Each pixel is an independent photodetector that converts
the incident radiation into an electrical signal. In the case of the prominent CCD sensor,
each pixel is a semiconductor in which incident photons create free electrons. The ability of
photons to create a free electron in the pixel is dependent on the photon’s wavelength and
can be quantified by the pixel’s spectral quantum efficiency QEν .
During the exposure of the pixel, lots of electrons are freed and collected in the pixel’s well.
Due to the temperature of the sensor, additional free thermal electrons are created and con-
tained in the well. These electrons are called the dark current ID of the pixel and can only be
reduced by lowering the detector’s temperature. By taking dark frame images with no incident
radiation, this dark current background can be removed from the science image. However, as
shown later, the noise of the dark current cannot be removed from the science images.

10

2.4. Radiation Detection

To measure the number of collected electrons, the charge packets are moved by a clock to
the transfer registers as shown in figure 2.3. These registers move the collected electrons to
an analog to digital converter (ADC) which converts the collected charge to a digital signal.
This conversion introduces additional noise, known as the readout noise σR per pixel. The
readout of the pixels can be done in different ways, either after the exposure of the pixels or
by continuously measuring the charge, which is commonly known as following up the ramp.

Vertical shift registers
Active Pixels

Transfer register

Output

Figure 2.3.: Example read out of a CCD sensor
The charge packets are transferred over the neighboring pixels to a transfer reg-
ister. The output of the transfer register is connected to an ADC.
Source: https://www.stemmer-imaging.com/en-pl/knowledge-base/ccd/

Each pixel well has a finite well capacity that overflows to the neighboring pixels if the pixel
is overexposed. This effect is called blooming and must be avoided as this irreversibly alters
the measurement.

Exposure

Before the SNR can be calculated, the number of incident photons per pixel has to be com-
puted from the spectral flux of the incident radiation. Multiplying the spectral flux Φν with
the exposure time texp and dividing by the photon energy hν yields the spectral photon count.

Nphot,ν =
Φν · texp
h · ν

(2.16)

The number of produced free electrons can then be calculated using the pixel’s spectral quan-
tum efficiency QEν as

Ne− =

∫
Nphot,ν ·QEν dν =

∫
Φν · texp
h · ν

·QEν dν (2.17)

The aforementioned spectral flux of the incident radiation at the focal plane position of a
pixel depends both on the shape of the source as well as on the PSF of the telescope. As
explained in section 2.2, the spectral radiance is used to describe extended sources whereas
only the spectral radiant flux density can be measured for point sources.

Point Source with Unobstructed Aperture In the simple case of a point source with an
unobstructed aperture, the spectral flux can be calculated as

Φν = Eν ·Aap (2.18)

11

https://www.stemmer-imaging.com/en-pl/knowledge-base/ccd/

2. Theory

Obstructed Point Source with Obstructed Aperture The case of a point source with an
obstructed aperture is similar to the unobstructed case except for the correction factor (1− o).

Φν = Eν ·Aap · (1− o) (2.19)

Extended Source with Unobstructed Aperture In the case of an extended source (the
background radiation can also be treated as an extended source), the incident spectral flux
Φν at the focal plane can be calculated with the viewing factor from the extended source to
the detector pixel. As the extended source covers the whole aperture, the calculation can
be reduced to the viewing factor from the aperture to the detector pixel as illustrated in
figure 2.4.
According to [9], the radiant flux Φν ,1−2 from the aperture A1 to a quadratic detector pixel
A2 with the edge length l can be calculated as

Φν ,1−2 =
x

LΩ,ν ,1 ·
cos2 (β)

r2
dA1 dA2 (2.20)

with the line of sight r and the angle β from figure 2.4a. The two sketches 2.4a and 2.4b show
that r can be represented using the Pythagorean theorem and the trigonometric functions as

r =

√
(x1 − x2)2 + (y1 − y2)2 + f2 =

√
(R · cos (ϕ)− x2)2 + (R · sin (ϕ)− y2)2 + f2. (2.21)

Applying the cosine-function on the tilt angle β of the line of sight in figure 2.4a and using
equation (2.21) results in

cos (β) =
F

r
=

F√
(R · cos (ϕ)− x2)2 + (R · sin (ϕ)− y2)2 + f2

. (2.22)

The infinitesimal area element dA1 can be rewritten in polar coordinates using figure 2.4c.
For an infinitesimal angle dϕ, the edges of dA1 become orthogonal yielding

dA1 = dR ·R · sin (dϕ) = RdRdϕ (2.23)

which can be simplified for infinitesimal small angles dϕ. Plugging equation (2.21), (2.22)
and (2.23) into equation (2.20) and applying the integration bounds gives

Φν ,1−2 = LΩ,ν ,1·∫ l
2

− l
2

∫ l
2

− l
2

∫ Dap
2

0

∫ 2π

0

F 2(
(R · cos (ϕ)− x2)2 + (R · sin (ϕ)− y2)2 + f2

)2 ·R dϕ dR dx2 dy2.

(2.24)

The sensor pixel edge length l is usually much smaller than the telescope’s aperture diameter
Dap: x1 = R · cos (ϕ) � x2 as well as y1 = R · sin (ϕ) � y2. Therefore, eq. (2.24) can be

12

2.4. Radiation Detection

simplified to

Φν ,1−2 = LΩ,ν ,1 ·
∫ l

2

− l
2

∫ l
2

− l
2

∫ Dap
2

0

∫ 2π

0

F 2(
(R · cos (ϕ))2 + (R · sin (ϕ))2 + f2

)2 ·RdϕdRdx2 dy2.

(2.25)
Carrying out the integrals and simplifying using the definition of the focal number N = f

Dap
leads to the final equation for the flux received by a detector pixel from an extended source

Φν ,1−2 = LΩ,ν ,1 · l2 ·
π

4N2 + 1
. (2.26)

As this equation is equivalent to the equation used by the community approved exoplanet
transit simulator ExoSim, the approximations above are valid. The detailed derivation of the
equation used by ExoSim is given in appendix B.

Dap

F r

⊥

⊥l

l

β

β

dA1

dA2

Aperture

Focal plane

R

(a) 3D view of the differential area elements

X

Y

l

l

ϕy2

x2

x1

y1

r
R

Dap

(b) Top view of the differential area elements

R

dA1

dϕ

dR

R · sin(dϕ)

(c) Differential area in a circle

Figure 2.4.: Sketch for the calculation of the viewing factor from the aperture to a sensor pixel

Extended Source with Obstructed Aperture The derivation of the radiant flux received by a
sensor pixel from an extended source with an obstructed aperture is analog to the derivation in

13

2. Theory

the unobstructed case if a central, circular obstruction is assumed. This assumption holds for
most telescope designs, as the obstruction is mostly caused by an opposing secondary mirror
in the center of the aperture. However, the integration with respect to R in equation (2.25)
behaves differently due to a dependency of LΩ,ν ,1 on R. In detail, the radiance of the central
obstructing component is different than the radiance of the extended source as the obstructing
component may emit its own thermal radiation.

LΩ,ν ,1 (R) =

{
LΩ,ν ,1,obs for R ≤

√
o · Dap2 ,

LΩ,ν ,1 otherwise
(2.27)

After executing the integrations with respect to ϕ, x2 and y2 in eq. (2.25), the received radiant
flux can be expressed as

Φν ,1−2 = 2π · l2 ·
∫ Dap

2

0
LΩ,ν ,1 (R) · f2 ·R

(R2 + f2)2 dR. (2.28)

Plugging equation (2.27) into (2.28) and executing the integration leads to

Φν ,1−2 = 2π · l2 ·
(
LΩ,ν ,1,obs

[
1

2
− f2

2
(
f2 + 1

4 · o ·Dap
2
)]+

LΩ,ν ,1

[
f2

2
(
f2 + 1

4 · o ·Dap
2
) − f2

2
(
f2 + 1

4 ·Dap
2
)]) (2.29)

which can be simplified to

Φν ,1−2 = π · l2 ·

(
LΩ,ν ,1,obs ·

o

4N2 + o
+ LΩ,ν ,1 ·

1− o
4N2 + 1 + o ·

(
1 + 1

4N2

)) . (2.30)

For 1
4N2 � 1 and 4N2 � 1 ≥ o which holds for most telescopes, the flux received by an

obstructed detector pixel can be calculated by

Φν ,1−2 ≈ l2 ·
π

4N2 + 1
· (LΩ,ν ,1,obs · o+ LΩ,ν ,1 · (1− o)) (2.31)

which exhibits a great similarity to eq. (2.26) in the unobstructed case by the factor l2 · π
4N2+1

.
It follows, that the radiances of the extended source and the obstructing component can be
approximately summed after weighting with the obstruction factor o. The error of used
approximations is assessed in appendix C.

Spatial Distribution on Pixels As explained in section 2.3, the telescope’s PSF spreads the
image of a perfect point across the focal plane. However, this only comes into effect for the
case of a point source. In the case of an extended source, the image consists of an infinite
amount of blurred points by the PSF, summing up to a uniformly exposed image without any
visible impact by the PSF.

14

2.4. Radiation Detection

X

Y

l

l

x0

y0

Figure 2.5.: Mapping the PSF onto the pixel grid
An exemplary PSF is shown on a pixel grid. A single pixel is highlighted and the
distance to the PSF’s center is labeled.

As shown in figure 2.5, the incident spectral radiant flux per pixel depends on both the size
and the position of the pixel relative to the center of the PSF. Mathematically, Φν ,pix can be
calculated as

Φν ,pix = Φν ·

∫ x0+ l
2

x0− l
2

∫ y0+ l
2

y0− l
2

I (x, y) dx dy
s

R2 I (x, y) dx dy
(2.32)

with the intensity function of the PSF I (x, y) and the pixel center offset (x0, y0). In the
developed ETC, these integrals are numerically computed as explained in section 4.2.2. The

pointing of a telescope often suffers from pointing jitter due to mechanical vibrations or
oscillations of the controllers. In the simplest case, the jitter has zero mean and follows the
Gaussian normal distribution[10]

f (x, y, σjit) =
1

2πσjit2
· e
−x

2+y2

2σjit
2 (2.33)

with its standard deviation σjit. Pointing jitter acts on the image in the same way as the
PSF by smearing out the image of a perfect point source. Hence the influence of the pointing
jitter on the incident spectral radiant flux per pixel can be calculated as the convolution of
the jitter and the PSF function

Φν ,pix = Φν ·

∫ x0+ l
2

x0− l
2

∫ y0+ l
2

y0− l
2

I (x, y) ∗ f (x, y, σjit) dx dy
s

R2 I (x, y) ∗ f (x, y, σjit) dx dy
. (2.34)

Photometric Aperture

Usually, the observation’s SNR is not calculated for a single pixel but rather for a virtual
photometric aperture (in the following only photometric aperture) containing a specific per-
centage of the incident radiation energy. This approach is necessary as typically many pixels
are exposed during the observation due to the radiation’s spatial distribution as explained in

15

2. Theory

the previous section 2.4.1. The total collected radiation in this photometric aperture is used
for the calculation of the signal-to-noise ratio.
According to the defined requirements[5] ESBO-ETC shall implement both a circular and a
quadratic photometric aperture. The radius and the edge length respectively of the photo-
metric aperture can be either defined in the configuration file or calculated from a specified
percentage of encircled energy EE. In the latter case, the equation

EE =

∫ Dphot
2

0

∫ 2π
0 I (r, ϕ) ∗ f (r, ϕ, σjit) dϕ dr∫∞

0

∫ 2π
0 I (r, ϕ) ∗ f (r, ϕ, σjit) dϕ dr

(2.35)

has to be solved for the diameter Dphot of the photometric aperture. This diameter is used
for both the circular aperture as well as for the edge length of the quadratic aperture.
Besides providing a percentage of encircled energy, the keywords peak, fwhm, min can be
supplied for a single pixel aperture, an aperture up to the PSF’s FWHM and an aperture to
the first minimum of the PSF. More information on this proceeding is given in section 4.2.2.

SNR Calculation

Photon counting devices like the CCD detector make use of the particle nature of the EM
radiation. The statistics of arriving photons at the detector can be described with the Poisson
distribution. For a large number N of photons, this distribution tends towards the Gaussian
distribution with the standard deviation

σ =
√
Nphot (2.36)

which holds for most astronomical observations[11]. Therefore the photon noise can be cal-
culated as

√
Nphot.

Even though the bias of the background with contributions from the astronomical & thermal
background radiation, dark noise and read-out noise can be removed from the image by ob-
servation techniques like chopping, nodding and dark frames, their noise contribution cannot
be removed. This circumstance is considered in the CCD-equation developed by Howell[12]

SNR =
Ne− ,sig√

Ne− ,sig +Ne− ,bg +Npix · ID · texp + (Npix · σR)2
(2.37)

with the dark current ID and the readout noise σR. This equation is the central equation for
the imaging detector, allowing to calculate both the SNR as well as the necessary exposure
time from the electron counts.

16

2.4. Radiation Detection

2.4.2. Heterodyne Spectrometer

Unlike the imaging detector, a spectrometer is used to measure the spectral and not the
spatial distribution of the incident radiation. However, the frequencies of the infrared bands
(430 THz – 300 GHz) are too high for computerized signal processing and most electronic
components. For this reason, the heterodyne principle is used to reduce the signal frequencies
to a level that can be further processed by digital electronics.
Heterodyning describes the process of mixing two signals, creating two frequency-shifted sig-
nals with one signal at the sum and the other at the difference of the input frequencies.
Typically, one of the two signals comes from a collector like a telescope and the other one
from a local oscillator (LO) which can be adjusted in a certain range. The basic principle
of a heterodyne receiver originates from radio technology where it is used to separate the
information from the carrier signal.
Figure 2.6 shows a simple heterodyne receiver, where one signal is collected by a telescope and
the second signal originates from an LO. A diplexer, which typically consists of one or more
beamsplitters, combines the two signals which are subsequently fed into the non-linear mixer.
After the two signals have been mixed, the desired intermediate frequency (IF) is filtered out
and amplified by a preamplifier This amplifier is the first in a chain of amplifiers and must
therefore only add as little noise as possible to the signal as this noise will be amplified by
the amplifiers further down the signal path. Hence the preamplifier is kept as cool as possible
to reduce the noise to a minimum. The overall noise power introduced by the receiver is
described by the receiver noise temperature Trec (see equation (2.7) which is typically in the
order of 103 K).
After the IF signal has been sufficiently amplified, the spectrum is measured and digitized by
a spectrometer in the back end. The efficiency of the back end is quantified by the back end
degradation factor κ.

IF Filter &
Amplifier

Local
Oscillator

Mixer
IF Filter &
Preamplifier SpectrometerSignal from

Telescope

Diplexer

Figure 2.6.: Typical heterodyne receiver
The signal received by the telescope is combined with the LO signal in a diplexer.
An antenna couples the resulting free space EM waves to an electron current which
is fed into a nonlinear mixer. The mixer creates the intermediate frequencies of
which the desired intermediate frequency is then filtered and amplified and finally
digitized by a spectrometer.

Antenna Theory

An antenna is an electrical device to convert an electrical current into free space EM radiation
and vice versa. Generally, an antenna can only receive or transmit radiation of one polarization

17

2. Theory

direction. Numerous different antenna types are available with the dipole antenna being
the simplest form. Each type exhibits a different beam pattern F (θ,Φ) that describes the
directional dependence of the strength of the emitted waves from the antenna. In the case of
the dipole, the beam pattern will take the shape of a donut. Figure 2.7 shows an arbitrary
antenna pattern that exhibits several side lobes additional to the main beam. Tapering the
main beam helps to reduce the influence of the side lobes but reduces also the antenna’s
resolution. The antenna forward efficiency ηfss is a measure for the ratio of radiation received
from the forward hemisphere to the total received radiation. This efficiency is typically close
to one.

0°

30°

60°
90°

120°

150°

180°

210°

240°
270°

300°

330°

Main beam

Taper
Side lobe

Figure 2.7.: Exemplary antenna beam pattern
Typically an antenna beam pattern exhibits a strong forward-directed main beam
as well as some side lobes. Some of these side lobes might be even backward-
directed. Tapering the beam like indicated by the dashed lines can significantly
reduce the effect of the side lobes but it also reduces the antenna’s resolution

An antenna receives a PSD Pν from its environment that can be converted into a noise
temperature using equation (2.7). This can be motivated by the gedankenexperiment in
figure 2.8, where an antenna is completely contained in an enclosure of the temperature TB
and terminated by a matching resistor of temperature TA. The second law of thermodynamics
requires a thermal equilibrium between the antenna and the terminating resistor and therefore
leads to TA = TB. This said the antenna temperature TA is a measure of the power received
by an antenna.

Mixer

The mixer is the centerpiece of the receiver and plays an important role as it is responsible
for the conversion of the sum of the two input signals into the frequency-shifted signals. To
make this possible the mixer must exhibit a non-linear characteristic Uout = F (Uin) where the
output voltage Uout is dependent on the input voltage Vin in a non-linear way. This non-linear
characteristic can be written in terms of a Taylor expansion[13]

18

2.4. Radiation Detection

Enclosure
Temperature

TB

Resistor
Temperature

TA

Figure 2.8.: An antenna is enclosed by a black body radiator of temperature TB and connected
to a terminating resistor of temperature TA[6]. The second law of thermodynamics
requires TA = TB.

F (Uin) = F (0) +
dF

dU
· Uin +

1

2
· d2F

dU2
· U2

in +
1

6
· d3F

dU3
· U3

in + ...

= K0 +K1 · Uin +K2 · U2
in +K3 · U3

in + ...

(2.38)

Using only the terms up to the second-order and Uin = A · sin (2πνLOt) + B · sin (2πνsigt)
with the signal frequency νsig and the local oscillator frequency νLO yields

Uout = K0 +K1 · (A · sin (2πνLOt) +B · sin (2πνsigt))

+K2 · (A · sin (2πνLOt) +B · sin (2πνsigt))
2 +H.O.T.

= K0 +K1 · (A · sin (2πνLOt) +B · sin (2πνsigt))

+K2 ·
(
A2

2
+
B2

2

)
−K2 ·

(
A2

2
· cos (4πνLOt) +

B2

2
· cos (4πνsigt)

)
+K2 ·A ·B · (cos (2π (νLO − νsig) t)− cos (2π (νLO + νsig) t)) +H.O.T.

(2.39)

The last term of equation (2.39) contains the aforementioned sum and difference of the two
input signals. Strictly speaking, the difference νLO − νsig produces positive frequencies for
νLO > νsig and non-physical negative frequencies for νLO < νsig. However, only the absolute
value of the frequency can be observed in reality thus leading to an interesting phenomenon.
A feature like a line emission in the IF band may originate from two bands in the incoming
signal which are located symmetrically around the local oscillator frequency. The band with
the lower frequency is called the lower sideband (LSB) and the other the upper sideband
(USB). Sometimes LSB and USB are also referred to as signal band and image band and vice
versa, depending on which of these two bands contains the region of interest. This situation
is depicted in figure 2.9 which shows how the LSB and the USB are summed to form the
dual sideband (DSB) signal. Such a receiver is called a DSB heterodyne receiver, whereas a
single sideband (SSB) receiver filters for either the USB or the LSB before mixing. Because of
the conservation of energy, the amplitudes in the IF are only half of the original amplitudes.
Depending on the receiver, the IF amplitudes are sometimes calibrated to the SSB amplitude
to preserve the line intensities as heterodyne detectors are mostly used for line observations.
The downside of this proceeding is that the continuum temperature which is present in both
the LSB and the USB is now twice its real temperature. This will be of importance for the
simulation of a Herschel observation in section 6.2.

19

2. Theory

490.0 492.5 495.0 497.5 500.0 502.5 505.0 507.5 510.0

0

1

2

3

4

5

Sky Frequency / GHz

SS
B

T
em

pe
ra
tu
re

/
K

4 5 6 7 8

0.0

0.5

1.0

1.5

2.0

2.5

Intermediate Frequency / GHz

SS
B

T
em

pe
ra
tu
re

/
K LSB

USB

504 505 506 507 508

0.0

0.5

1.0

1.5

2.0

2.5

USB Frequency / GHz

D
SB

T
em

pe
ra
tu
re

/
K

496 495 494 493 492

LSB Frequency / GHz

LSB USBLO Frequency

Figure 2.9.: The ambiguity of the DSB signal
The mixer shifts the signals from the LSB and the USB to the IF band creating
two SSB signals. However, only the sum of both SSB signals can be measured as
DSB signal.

A distinction between the LSB and the USB requires some special techniques. Shifting the
LO frequency results in features from the LSB being shifted in a different frequency direction
than features from the USB, because the LSB is mirrored in the IF. By carrying out the same
observation with slightly different local oscillator tunings, a technique called deconvolution[14]
can be used to separate the two bands.

Measurement

"Because of the way a heterodyne receiver is calibrated (i.e. measuring the receiver tempera-
ture Trec, with a hot and a cold load), the logical intensity unit for a heterodyne observation
is temperature, expressed in Kelvin (K)"[7]. Usually, the antenna temperature TA is used.
For the detailed calculation of the antenna temperature, the two cases of a point source and
an extended source need to be distinguished as shown in figure 2.10.

20

2.4. Radiation Detection

Extended
Source LΩ,ν

Main
Beam

(a) Extended source
The observable LΩ,ν can be measured.

Compact
Source Eν

Main
Beam

(b) Compact source (e.g. point source)
Only the observable Eν can be measured. This
effect is called beam dilution.

Figure 2.10.: The two figures show the main lobe of the antenna enclosed by the dotted FOV
of the telescope for the two cases of the source’s size[6].

Point Source The PSD received by an antenna can be expressed as[7]

Pν = kBTA =
1

2
· Eν ·Aeff ·

1

ηfss
. (2.40)

with the factor 1
2 taking account for one polarization per receiver and the effective antenna

area Aeff . This can be calculated by

Aeff = ηap ·Aap (2.41)

where the aperture efficiency ηap takes the antenna’s efficiency for measuring point sources
into account. Rearranging equation (2.40) yields an expression for the calculation of the
antenna temperature in the case of a point source:

TA =
Eν ·Aeff

2 · kB · ηfss
(2.42)

Extended Source In the case of an extended source, the antenna is assumed to be tapered
in such a way that only the main beam is exposed to the extended source. This is a reasonable
assumption that is satisfied by the two prominent heterodyne detectors GREAT and HIFI.
This said the main beam temperature Tmb equals the Rayleigh-Jeans brightness temperature
of the extended source

Tmb = TB = LΩ,ν ·
c2

2 · kB · ν2
(2.43)

The main beam temperature can be converted to an antenna temperature using equation 5.4
from [15]

Tmb =
ηfss
ηmb
· TA, (2.44)

21

2. Theory

with the main beam efficiency ηmb. This efficiency is defined as the ratio of the main beam
solid angle

Ωmb =
x

mb

F (θ,Φ) dθ dΦ (2.45)

to the antenna solid angle

ΩA =
x

4π

F (θ,Φ) dθ dΦ = Ωmb + Ωsl (2.46)

with the sidelobe solid angle Ωsl, representing the fraction of power coming from the main
beam compared to the overall received power[13]

ηmb =
Ωmb

ΩA
. (2.47)

Putting these equations together leads to an expression for the computation of the antenna
temperature for an extended source:

TA = LΩ,ν ·
c2

2 · kB · ν2
· ηmb
ηfss

(2.48)

Equation (2.48) can also be derived in a very similar way to the point source case. The PSD
received by an antenna from a uniformly illuminated extended source that fills the complete
main beam can be calculated by

Pν = kBTA =
1

2
· LΩ,ν · Ωmb ·Aeff ·

1

ηfss
. (2.49)

Rearranging this equation results in an expression for the antenna temperature which requires
the knowledge of the main beam solid angle Ωmb

TA =
LΩ,ν · Ωmb

ΩA
· ΩA ·Aeff

2 · kB · ηfss
(2.50)

The antenna theorem is given without derivation from [6] as

ΩA =
λ2

Aeff
=

c2

Aeff · ν2
(2.51)

which relates the angular antenna resolution to the effective antenna area and the observed
wavelength. Plugging the antenna theorem (2.51) and the definition of the main beam effi-
ciency (2.47) into equation (2.50) yields again equation (2.48).

SNR Calculation

The calculation of the SNR of an observation with a heterodyne instrument requires a value
for the observation’s noise. As the signal TA is measured as Temperature in Kelvins, the noise
∆Trms is also measured as noise temperature following eq. (2.7).

22

2.4. Radiation Detection

The system temperature Tsys of the detector is a measure for the total detected power in-
cluding the astronomical signal TA as well as background radiation sources Tbg and the dis-
turbances of the detector’s electronic components captured by Trec

Tsys = TA,LSB + TA,USB + Tbg,LSB + Tbg,USB + 2 · Trec. (2.52)

The factor of 2 takes account for the receiver temperature being the same in both the upper
and lower sideband[7]. Assuming a Gaussian distribution of the noise which holds according
to the central limit theorem[6], the root mean square (RMS) noise temperature ∆Trms of N
averaged data points can be calculated as

∆Trms =
Tsys√
N
. (2.53)

The number of data points N taken during an integration time texp is given by the Nyquist-
Shannon theorem with the signal bandwidth ∆ν

N = ∆ν · texp. (2.54)

Equation (2.53) and (2.54) yield for the RMS noise temperature

∆Trms =
Tsys√

∆ν · texp
. (2.55)

This equation is generally known as the radiometer equation. However, this equation does not
take the chopping between the astronomical source and the background into account which is
necessary to remove the background radiation during data processing. As chopping reduces
the effective exposure time by a factor of 1

2 and the subtraction of two independent random
variables (signal and background) increase the noise by a factor of

√
2, the equation for the

RMS noise temperature becomes

∆Trms =
2 · Tsys√
∆ν · texp

. (2.56)

The SNR of the observation can now be calculated as

SNR =
TA

∆Trms
=

TA
2 · Tsys

·
√

∆ν · texp. (2.57)

Due to the limited spatial resolution of heterodyne detectors, an observation technique called
on-the-fly mapping is used to map larger regions. Thereby, "the telescope scans along a series
of rows while the back-ends are continuously integrating the incoming signal"[7]. The SNR
of such an observation is given by

SNR =
TA

Tsys ·
√

1 +
√

1
Non

·
√

∆ν · texp (2.58)

where texp "is the on source exposure time per point, and Non is the number of on-source
positions between measurements of the reference position"[7].

23

3. Preparatory Work

After all the required mathematical equations for the exposure time calculator have been
collected, the design and implementation of the new software can be started. Some useful
tools support the developer in this lengthy process to stay on top of things which are explained
in the following. But first, a brief introduction to python is given.

3.1. Python

Python was developed in 1991 by Guido van Rossum in Amsterdam as an open-source script-
ing language for the operating system Amoeba. The goal was to develop a simple and easily
readable but powerful programming language. It supports both functional and object-oriented
programming as well as other programming paradigms. Even though Python is an interpreted
scripting language, every program needs to be compiled to byte code which can then be in-
terpreted by the Python interpreter. Since the not backward compatible version 3.0, Python
was completely redesigned and offers a garbage collection for efficient memory management.
Today, Python is managed by the Python Software Foundation which coordinates the open-
source development. Thanks to the portability and the many package extensions, the language
is among the most popular programming languages in the world[16]. For these reasons, Python
was chosen for the implementation of ESBO-ETC .

3.2. Project Structure

ESBO-ETC

docs

esbo_etc

classes

lib

tests

Dockerfile

Jenkinsfile

esbo-etc.py

Figure 3.1.: Project Structure

Prior to the implementation of the software, the project’s
folder structure has to be defined. A typical python project
structure was chosen for ESBO-ETC as shown in figure 3.1.
The folder docs contains all source files of the documenta-
tion as well as all necessary scripts for building the doc-
umentation (see also section 3.4.3). The Python source
code is stored in esbo_etc with all classes in the subfolder
classes and all modules in lib. This structure enables hi-
erarchical imports in the software’s main file esbo-etc.py.
Besides the source code of the documentation and the soft-
ware, the project also makes use of build tests for the soft-
ware as described in section 3.4.2. The source files of these
tests are contained in tests.
Finally, the project’s root directory also contains a
Dockerfile which defines the build-environment of the
CI/CD pipeline defined in Jenkinsfile (see also sec-
tion 3.3.3 and 3.3.2).

25

3. Preparatory Work

3.3. Tools

Several tools and libraries were used to support and simplify the process of software develop-
ment. This includes on the one hand tools for source code management and deployment like
git, Jenkins or docker but also extensive Python packages for testing and documentation.

3.3.1. Version Control

Version control refers to a system for managing and tracking changes to computer files, mostly
programming source code. Every change and the responsible person can be traced and, in
case of an error, reverted. Furthermore, it allows the collaboration of many people on the
same project or even the same file by merging all applied changes. The most popular version
control system git was used for ESBO-ETC .

git

Unlike many other version management tools, git, which was originally developed by Linus
Torvalds for his Linux kernel, initially works locally on the development computer. A repos-
itory is created for each project to capture its revision history. Files can be added to the
tracking and changes including a brief description of the applied changes can be committed to
the repository. In a second step, the changes in the local repository can be pushed to a server
repository, where the changes of all developers can be merged. The other way round, the
changes of other developers can be pulled from the server repository to the local repository.
There are numerous web interfaces available for managing the server repository, of which
GitHub is probably the best known. In this case, however, a local installation of Gitea was
used as this is the preferred software of the IRS.

Gitea

Gitea is an open-source version management software based on git. It offers a sophisticated
web GUI for administrating and browsing the server-side repository. Besides the repository
management, Gitea offers several other features, such as the collection of issues, release man-
agement as well as a wiki for documentation. Another useful feature is the integration of
webhooks which will be triggered after a push to the repository. This mechanism is required
for CI/CD tools like Jenkins in section 3.3.2. The ESBO-ETC repository is publicly accessible
at https://egit.irs.uni-stuttgart.de/esbo_ds/ESBO-ETC.

3.3.2. Jenkins

Jenkins is an open-source automation server for tasks during software development like testing,
building or deploying applications. This automation flow is called a continuous integration /
continuous development (CI/CD) pipeline. All steps, tasks and artifacts of the pipeline are
defined in a file called Jenkinsfile in the JSON format. After the installation of Jenkins, a
new pipeline can be set up by establishing a connection to a source code repository containing
a Jenkinsfile. By adding a webhook to the repository, the pipeline is triggered after each
push to the repository. During each run of the pipeline, all stages are executed on the Jenkins-
server using the environment defined in the Jenkinsfile.

26

https://egit.irs.uni-stuttgart.de/esbo_ds/ESBO-ETC

3.4. Python Packages

3.3.3. docker

docker is an open-source software that allows individual applications to run in isolated and
portable docker containers. docker is deeply integrated into the Linux kernel, which is why
docker containers can be executed directly at the kernel level as processes.
Before a docker container can be executed, a so-called docker image must be built, which is
a blueprint of a docker container. A docker container can be derived from this image on any
system, independent of the environment. Such a docker image is built using a Dockerfile,
which defines the steps for building the docker image. Each of these steps is executed sequen-
tially in a separate docker container based on the temporary docker image of the previous
step. The result of each step is added as a new layer to the target image.
Although it is possible to create a docker image from scratch, in most cases the extension of
an existing docker image is much more efficient. For this purpose, each Dockerfile contains
the instruction FROM at the beginning, defining the parent docker image. An example of this
is the docker image Alpine, which contains a minimal installation of the Linux distribution
Alpine and thus already contains numerous useful applications such as a shell as well as some
libraries.

3.4. Python Packages

One reason Python was chosen for the implementation of ESBO-ETC is the large amount
of freely available packages that can be used. Among many others there exist packages for
astronomic unit-based calculations like Astropy, packages for easy documentation writing like
Sphinx as well as for testing source code like unittest. Even though some more de facto
standard packages like numpy or scipy have been used for ESBO-ETC , only the rather
unusual packages are described in the following.

3.4.1. Astropy

The Astropy project is a community-driven collection of libraries for astronomical calculations
in Python. It contains numerous methods for data structure and transformation, file input
and output as well as computations. Besides the provided universal constants like h, c or kB,
primarily the tools for reading FITS and ASCII files, as well as the units-module have been
used for ESBO-ETC .
Especially the units-module proved to be very helpful as it allows efficient unit-based calcula-
tions in python. This prevents bugs due to wrong unit prefixes (like milli, micro or nano) or
incorrectly implemented formulas. In detail, Astropy not only checks the units for consistency
during calculations but also allows the conversion of units as well as simplifications. It also
allows defining the units of a method parameter in order to ensure correct method arguments.
These units are also used for the XML configuration file as well as the column headers of
input files.

27

3. Preparatory Work

3.4.2. unittest

In software development, unit testing describes the process of testing individual units of an
application to verify the correctness of the source code. To prevent breaking already working
modules, the Python package unittest was used to execute automated build tests.
unittest allows to define and execute test cases including both start-up scripts and shut-
down scripts. After a test has been executed, the result is compared to a default value.
Throughout this thesis, a total of 47 unit tests have been defined which test all classes of
ESBO-ETC against stored results. As explained later in section 4.6, these tests are part of
the build-pipeline’s first stage. In addition, these tests may be executed manually during the
development at any time to check for any breaking changes.

3.4.3. Sphinx

The Python framework Sphinx was used for building the documentation of ESBO-ETC .
It provides the necessary tools to compile documentations in HTML or LATEX from source
code using the reStructuredText-syntax. Using reStructuredText enables powerful markup
commands like cross-references, embedded images, text styling and many more. As the doc-
umentation is built from these source files, they can be version controlled as well using the
methods described above.
Besides the manual writing of the documentation, the plugin napoleon was used to create an
API documentation from the docstrings of all developed Python classes and methods.
The documentation of ESBO-ETC can be either manually compiled or automatically by
the project’s CI/CD-pipeline as explained in section 4.6. This pipeline not only compiles
the documentation to HTML but also deploys the latest version to the webroot of ESBO’s
webserver.

28

4. Implementation

All properties and features of the developed software are explained in this chapter starting
with some details on ESBO-ETC’s architecture. This is followed by an explanation of all
numerical approaches to mathematical equations. Finally, the input and output files as well
as the documentation are presented.

4.1. Software Architecture

Choosing the right architecture is crucial for the implementation and expandability of the
software. As python natively supports object-oriented programming (OOP), many popular
design patterns for OOP can be used. These patterns help to fulfill the two general rules for
OOP:

1. Open-closed principle: "software entities (classes, modules, functions, etc.) should
be open for extension, but closed for modification"[17]. This means, that software should
be extendable without having to modify the existing source code.

2. Cohesion vs. coupling: The term coherence refers to how specialized a class is
designed. A class with many different tasks has low cohesion. The interdependency of
classes is described by the term coupling. Classes have a high coupling if changes to one
class directly require modifications to the other classes. Ideally, software has a strong
cohesion and a low coupling of the classes.

To satisfy both rules, the decorator pattern and the factory pattern have been chosen for
ESBO-ETC and will be explained in the following sections. The parameters of all methods
are omitted in the following for the sake of clarity.

Detector
Optical

Component
Optical

Component Target
calcSignal()

calcBackground()

calcSignal()

calcBackground()

calcSignal()

calcBackground()
getSNR()

efficiency,
noise

Figure 4.1.: Decorator pattern used for ESBO-ETC
The methods calcSignal() and calcBackground() are called in a cascade from
the outermost object to the innermost object.

29

4. Implementation

4.1.1. Decorator Pattern

ESBO-ETC aims at simulating the emission, transfer and detection of electromagnetic radi-
ation. All involved components in this unidirectional process are defined dynamically in the
XML configuration file. This situation can be modeled perfectly using the decorator pattern.
This pattern allows to dynamically attach "additional responsibilities to an object"[18] by
decorating the object with another object providing the additional features. The decorating
object, therefore, has to have the same methods as the decorated object and forwards any
method call to the decorated object before returning the result. The use case of the decorator
pattern for ESBO-ETC is shown in figure 4.1.
An astronomical target is always the start of the radiative transfer process and is therefore
always the core object of the decorators. It might be decorated by any optical component
like an atmospheric model or a mirror component that requests the signal and background
radiation from the decorated object. Before returning the quantity, an optical component may
increase or decrease the radiation by extinction or emission. Just like in reality a detector
forms the end of the radiative transfer and can therefore not be decorated.

parent 1

parent

1

�interface�
IRadiant

+ calcSignal()
+ calcBackground()

ATarget

+ ATarget()
+ calcSignal()
+ calcBackground()

AOpticalComponent

+ AOpticalComponent()
+ calcSignal()
+ calcBackground()

ASensor

+ ASensor()
+ getSNR()
+ getExpTime()
+ getSensitivity()

Figure 4.2.: UML representation of the decorator pattern used for ESBO-ETC
The interface IRadiant is implemented (dashed arrow) by every decorable class
(ATarget, AOpticalComponent). Any decorator decorates an object of the type
IRadiant. Finally, an ASensor-object possesses (solid arrow) an object of type
IRadiant but is not decorated by any other class. All shown classes are abstract
because they are prototypes for the actual components.

This architecture can be represented as Unified Modeling Language (UML) class diagram
as shown in figure 4.2. The interface IRadiant defines the methods to be implemented
by all decorable classes. As explained in figure 4.1, these methods are calcSignal() and
calcBackground(). All target classes shall be able to be decorated and therefore imple-
ment the interface IRadiant. Furthermore, all optical components shall be able to decorate
any class with the interface IRadiant but also be decorated. This is the reason why the
abstract superclass for all optical components AOpticalComponent implements the interface
and possesses an object with the interface IRadiant. This situation is represented by the
implementation arrow and the unidirectional association of the class AOpticalComponent in

30

4.1. Software Architecture

figure 4.2. Eventually, a sensor-object terminates the series of decorated objects which is the
reason why the abstract class ASensor only possesses an object with the interface IRadiant
but doesn’t implement the interface itself.
The selected architecture for the radiative transfer allows to dynamically add optical compo-
nents of different kinds between the astronomical target and the detector. Each component
may alter the incident radiation in its own way independent from the previous components.
Furthermore, future targets, optical components and detectors can be added easily, as they
are independent of the other classes and just have to follow the decorator pattern. Thereby,
both rules of OOP are satisfied.

4.1.2. Factory Pattern

1

«instanciate»

«instanciate»

«instanciate»

AFactory

+ AFactory()
+ create()
+ collectOptions()

TargetFactory

+ TargetFactory()
+ create()

OpticalComponentFactory

+ OpticalComponentFactory()
+ create()
+ fromConfigBatch()

SensorFactory

+ SensorFactory()
+ create()

�interface�
IRadiant

+ calcSignal()
+ calcBackground()

ATarget

+ ATarget()
+ calcSignal()
+ calcBackground()

AOpticalComponent

+ AOpticalComponent()
+ calcSignal()
+ calcBackground()

ASensor

+ ASensor()
+ getSNR()
+ getExpTime()
+ getSensitivity()

Figure 4.3.: UML representation of the factory pattern used for ESBO-ETC
The abstract class AFactory defines the abstract method create for the creation
of new elements which is implemented by all subclasses. These subclasses are re-
sponsible for the instantiation of the subclasses of the interface IRadiant. Even
though ASensor is not implementing the interface IRadiant and therefore doesn’t
strictly follow the factory pattern, its factory class SensorFactory is still a sub-
class of AFactory and therefore included in the class diagram.

31

4. Implementation

The factory pattern is used in OOP to define "an interface for creating an object, but let
subclasses decide which class to instantiate"[18]. This said, the factory pattern allows to add
new components without having to modify the existing factories and fulfills thereby the open-
closed principle of object-oriented programming. Besides that, the factory pattern increases
to code’s coherence, as the instantiation and usage of objects are strictly separated.
Figure 4.3 shows the factory pattern as it is used for ESBO-ETC . The abstract superclass
AFactory defines the method create() which has to be implemented by all subclasses for
the construction of the corresponding component. Each sort of component of the radiative
transfer and detection process (target, optical component and detector), are created by a
separate factory. As the class ASensor does not implement the interface IRadiant, it doesn’t
strictly follow the factory pattern. Yet it is shown in the diagram as its corresponding factory
SensorFactory inherits from the superclass AFactory.
The factory template AFactory additionally provides the method collectOptions() to all
factories which allows collecting the required instantiation parameters of the components from
the configuration file.
It has to be mentioned, that not the abstract classes ATarget, AOpticalComponent and
ASensor are instantiated by the corresponding factories but rather their subclasses. These
subclasses have been omitted in the class diagram for the sake of clarity.
The method fromConfigBatch of the factory OpticalComponentFactory allows creating mul-
tiple optical components at once from a batch of configuration entries.
To reduce the coupling of the source code, the three factories shown in figure 4.3 do not
contain specific code for any class that can be instantiated. This proceeding enforces the
open-closed principle as well, due to the fact that new subclasses of the abstract classes on
the right-hand side of figure 4.3 can be added without having to modify the corresponding
factory.

4.1.3. Imaging Detector

The imaging detector is implemented as subclass of ASensor as shown in the class diagram
in apendix D. The architecture shown in figure 4.4 has been developed to facilitate the com-
putation of the SNR for the imaging detector. First of all, the class PixelMask derived from
the numpy ndarray enables a representation of the detector’s 2D pixel array. Besides the
inherited methods, this class takes the pixel properties like the size or the center position into
account and allows placing a virtual photometric aperture on the grid.
The interface IPSF defines methods for working with point spread functions: The method
calcReducedObservationAngle allows calculating the radius of a virtual photometric aper-
ture as observation angle reduced by Dap

λ . This reduced observation angle θ̄ can be used
for the realization of the photometric aperture on the pixel mask as explained above. Be-
sides the calculation of the photmetric aperture’s diameter, the interface IPSF defines the
method mapToPixelMask(). This method is intended for integrating the PSF on the pixel
grid. Thereby, the incident radiation’s distribution on the pixel grid is determined according
to equation (2.34). Both methods intrinsically take jitter into account for the calculation.
The first version of ESBO-ETC as delivered with this thesis includes a class for handling
PSFs described by the airy disk (see section 2.3). This shape is the default and will be used
if no additional keys are given in the configuration file. In contrast to the other two PSF
representation, the alteration of the PSF due to FOV obstruction is taken into account. The

32

4.2. Numerical Approaches

abstract class AGriddedPSF provides some methods for working with Point spread functions
that are given as 2D grid. On the one hand, the grid can be read from an output file of the
software Zemax by the class Zemax or it can be read from a FITS-image by the class FITS.
However, both classes cannot take the FOV’s obstruction into account. Nevertheless, both
classes include the effect of pointing jitter.

4.1.4. Class Diagram

The full class diagram as shown in appendix D consists mostly of the classes mentioned
before and their corresponding subclasses. Besides these classes, the class SpectralQty allows
calculations and mathematical operations with spectral quantities. The capabilities of this
class are explained later in section 4.2.1.

4.2. Numerical Approaches

Due to the finite precision of computers, numerical methods must be used to some extent
when implementing mathematical equations. For example, computers cannot handle contin-
uous spectral quantities as used in chapter 2 which is the reason why the class SpectralQty
was developed to handle these quantities. On the other hand, some mathematical equations
like the integration of the PSF cannot be solved analytically and require therefore numerical
approaches. This applies especially to the distribution of the incident radiation onto the im-
ager’s pixel grid according to the PSF and the pointing jitter. These approaches are explained
in the following.

4.2.1. Spectral Quantity

The class SpectralQty was developed to handle spectral quantities like the spectral radiance of
an astronomical target. The spectral quantity is stored discretized in two arrays: one holding
the wavelength bins and one holding the corresponding values of the spectral quantity. The
resolution of the grid is controlled by the configuration file tags wl_delta or res respectively.
To allow the usage of these spectral quantities in mathematical equations, the most common
mathematical operations are implemented using python’s magic methods. These magic meth-
ods are identified by two leading and two trailing underscores e.g. __add__() and are invoked
implicitly by Python. The magic method __add__() for example is invoked for the left-hand
side object in an addition. If the operation is not supported by the left-hand side object, the
method __radd__() of the right-hand side object is called. The addition, subtraction, multi-
plication, division, equality and power operators are implemented using these magic methods.
Depending on the operation, the other object used for the operation might be a number, a
unit-based quantity or another spectral quantity.
Before a mathematical calculation with two spectral quantities can be carried out, their
wavelength binning has to match. Therefore, the method rebin() allows changing the binning
of a spectral quantity using linear interpolation. By default, extrapolation is disabled and
zero is returned for wavelengths outside of the original wavelength range. This setting can be
overridden to allow extrapolation of the requested values or to truncate the requested values
to the valid range.
The calculation of the collected electrons of a CCD detector requires the integration of a
spectral quantity as shown in equation (2.17. This operation is realized in the method

33

4. Implementation

numpy

psf1

ndarray

Imager

+ Imager()
...

PixelMask

+ PixelMask()
+ createPhotometricAperture()

�interface�
IPSF

+ calcReducedObservationAngle()
+ mapToPixelMask()
rebin()

AGriddedPSF

+ AGriddedPSF()
+ calcReducedObservationAngle()
+ mapToPixelMask()
calcPSF()

Zemax

+ Zemax()

FITS

+ FITS()

Airy

+ Airy()
+ calcReducedObservationAngle()
+ mapToPixelMask()
– airy()
– airy_int()

Figure 4.4.: UML representation of the architecture used for the distribution of the incident
radiation on the detector pixels.
Derived from the numpy-class ndarray, PixelMask is used to model the detector’s
pixel grid. Furthermore, it allows setting up a virtual photometric aperture on
the array. The interface IPSF defines methods for working with PSFs like the
calculation of the photometric aperture’s diameter as well as mapping a PSF
onto the pixels.

integrate()) which uses the trapezoidal rule (the simplest Newton–Cotes formula) for the
integration. The spectral quantities used in ESBO-ETC depend on the input files and are
therefore generally unknown. The trapezoidal rule as an integration rule of first-order inte-

34

4.2. Numerical Approaches

grates even discontinuous function with a low error. For this reason and the low computational
effort, this rule was chosen.
As a result of the discretization of spectral quantities, the accuracy of the calculations for
the imaging detector depends on the defined spectral resolution in the configuration file. It is
therefore up to the user to balance between computational effort and precision.

4.2.2. Imaging Detector

The calculation of the incident radiation’s distribution onto the pixels of the imaging detector
requires the use of numerical methods. First of all, the diameter of the photometric aperture
has to be computed by solving equation (2.35) for the diameter of the photometric aperture
Dphot. Afterward, the photometric aperture has to be mapped onto the pixel grid requiring a
rasterizing algorithm. The amount of incident radiation per pixel can be calculated in the end
by integrating the PSF on a per-pixel basis. The approaches used to solve these problems are
described in this section. Common to all approaches is the usage of a pixel oversampling factor
nosf defined in the configuration file to control the resolution of all numerical calculations. By
default, nosf = 10. Higher oversampling factors may enhance the precision of the calculations
but also increase the computational effort by O

(
n2
)
in some cases.

Calculation of the Photometric Aperture Size

As explained in section 2.4.1, the SNR of the imaging detector is not calculated on a per-pixel
basis but rather for a defined virtual photometric aperture. If not defined in the configuration
file, the size of this aperture has to be calculated (numerically) using the given encircled energy
or keyword. The effects of pointing jitter are taken into account during the computations.
Depending on the used PSF, different computation methods are used as explained in the
following.

Airy Disk The airy disk representation of the PSF supports all variants of encircled energy
keywords. However, pointing jitter can only be considered for a given percentage of encircled
energy or the keyword fwhm. The calculation of the reduced observation angle consists of
two steps: First of all, the reduced observation angle is calculated using equations (2.14)
and (2.15). In a second step, the pointing jitter is applied and the observation angle is
corrected. Due to the rotational symmetry of the airy disk, all calculations can be reduced to
one dimension to reduce the computational effort.
The keyword peak corresponds to a virtual photometric aperture containing only a single
pixel, located a the central peak of the PSF. Therefore a reduced observation angle θ̄phot = 0
is used.
If the keyword fwhm is given, the full width half maximum of the airy disk is calculated. In
the case of an unobstructed airy disk, the value θ̄phot = 1.028 from the literature is used.
Otherwise, the position of the FWHM is computed by solving

Iλ

(
θ̄FWHM

2

)
=
Iλ (0)

2
(4.1)

for θ̄FWHM. Since the obstructed airy function is not analytically invertible, numerical meth-
ods have to be used. Since the function of the obstructed airy disk is continuous and its

35

4. Implementation

analytic derivative can be calculated, Newton’s method can be used for the computation of
the reduced observation angle. However, this method only converges if no point with zero
gradient is hit. This can be avoided by using an appropriate start value. The FWHM of
the airy disk is contained between the central peak and the first minimum of which both
exhibit zero gradient. For increasing obstruction ratios o, the FWHM tends towards smaller
observation angles as shown in figure 2.2. Using the literature value for the observation angle
of the unobstructed airy disk’s FWHM, no maxima or minima with zero gradient is located
between the start value and the root.
A similar situation arises with the keyword min: The first minimum of the unobstructed airy
disk is known from the literature as θ̄phot = 2.44. However, the position of the obstructed
airy disk’s first minimum has to be calculated numerically due to the irreversibility of the first
derivative. Therefore the Nelder–Mead method is used to find the function’s first minimum.
This method is well known for its robustness but depends on a good starting point for a
quick convergence. As shown in figure 2.2, the first minimum is always located between the
disk’s central peak and its first maximum and shifts to smaller observation angles for higher
obstruction ratios. For this reason, the position of the unobstructed airy disk’s first minimum
is used as a starting point for the computation.
The last case covers the specification of an encircled energy percentage in the configuration
file. In this case, equation (2.35) has to be solved for Dphot which can be converted to a
reduced observation angle using the trigonometric relation tan

(
θ
2

)
=

Dphot
2·f by

θ̄phot = θ · Dap

λ
=
Dphot

N · λ
. (4.2)

The integral of the airy disk provides an analytic solution only for the unobstructed case, all
other cases have to be calculated numerically. This is done using a 21-point Gauss–Kronrod
quadrature from the FORTRAN library QUADPACK. Additionally to the numerical inte-
gration, another numeric method is necessary to solve the equation for Dphot. To reduce the
number of calls to the integration method, the bisection method was used. This method offers
a fast convergence without having to compute the function’s gradient numerically. Reducing
the number of calls to the integration method to a minimum significantly reduces the com-
putational effort as the overall calculation consists of two chained numerical computations.
After the computation of the virtual photometric aperture’s diameter without taking pointing
jitter into account, the diameter is corrected for the pointing jitter effect. To model this effect,
the convolution of the airy disk and a Gaussian bell is calculated. Due to the radial symmetry
of both the airy disk and the Gaussian bell curve, the convolution can be reduced to a one-
dimensional problem to reduce the computational effort.
Again this convolution does not provide an analytic solution which is the reason why nu-
merical convolution in the Fourier space is used. This requires both the airy disk and the
Gaussian bell curve to be discretized on a grid. To cover all significant information, the grid
is chosen to be of the size 2 · (θphot + 3σjit) with a resolution defined by the pixel oversam-
pling factor nosf in the configuration file. By default, a resolution ten times finer than the
pixel size θpix is used (nosf = 10). With both functions mapped onto a separate grid, the
convolution can be calculated. The position of the FWHM for the blurred airy disk can be
found by solving equation (4.1) for θ̄FWHM using the convolution result. On the other hand,
the photometric aperture’s diameter for a given percentage of encircled energy is computable

36

4.2. Numerical Approaches

through equation (2.35) where the integration is replaced by a sum due to the discretization:

EE =

∑n
i=0 (I (θ)× f (θ, σjit)) (θi)∑nosf ·(θphot+3σjit)

i=0 (I (θ)× f (θ, σjit)) (θi)
(4.3)

with n ≤ nosf · (θphot + 3σjit) and the resulting reduced observation angle θ̄phot = n
nosf
· θpix ·

Dap
λ . A cumulative sum allows solving this problem efficiently.

Gridded PSF The two other available PSF representations of the ESBO-ETC version deliv-
ered with this thesis is a precomputed PSF by the software Zemax and a FITS-file. Zemax is
a software that allows to design optical systems and calculate the system’s PSF using Fourier
optics which can be saved as a two-dimensional matrix of the size 32 × 32 in a delimiter
separated file. Both representations share some methods provided by AGriddedPSF as shown
in figure 4.4.
The gridded PSF implementation of ESBO-ETC supports only the calculation of the vir-
tual photometric aperture’s diameter from a given percentage of encircled energy using the
delimiter separated file. This arises by the ambiguity of the FWHM or the first minimum
of a radial asymmetric function. Unlike the calculation method used for the airy disk, the
gridded PSF implementation takes the effect of pointing jitter directly into account without
correcting for it in a second computational step. Therefore the PSF is parsed from the file
to a two-dimensional matrix representation. According to the defined pixel oversampling in
the configuration file, an oversampled PSF is calculated using two-dimensional cubic interpo-
lation. Subsequently, this oversampled matrix is then convoluted with a Gaussian bell curve
for the given jitter σjit in the frequency domain. As the result of this convolution is required
for mapping the PSF onto the pixel grid in a later step (see section 4.2.2), it is stored during
runtime to reduce the computation time.
After oversampling the PSF and applying possible pointing jitter effects, the photometric
aperture’s diameter can now be calculated from equation (2.35). Following the approach for
the airy disc, the bisection method is used to find an optimal value for Dphot. Since equa-
tion (2.35)contains an integration over the circular virtual photometric aperture, a procedure
to calculate this integral on a cartesian grid is required. In a first effort, a two-dimensional
interpolation function for the function values on the grid has been defined which in turn could
be plugged into a numerical integration method. However, this means that the resulting di-
ameter of the photometric aperture is calculated by a cascade of three numerical methods:
bisection, integration and interpolation. This proceeding not only gives rise to large errors
but also requires a lot of computation time. A solution for this problem is the use of a raster-
ization of the circular aperture on the cartesian grid as described in section 4.2.2. Summing
all the gridded values of the PSF contained in the rasterized circle equals the integration over
the circular aperture. This way, only two numerical methods are being used: the bisection
method and the circle rasterization. The precision of this computation is controlled by the
user via the pixel oversampling factor nosf in the configuration file.

Rasterizing the Photometric Aperture

After the diameter of the virtual photometric aperture has been calculated or defined in the
configuration file, the corresponding shape has to be rasterized onto the pixel grid. This is

37

4. Implementation

done by the method createPhotometricAperture of the class PixelMask. Due to the possible
non-integer displacement of the photometric aperture’s center from the detector center, this
rasterization is an ambiguous numeric process.

Circular Aperture A conservative algorithm which generally slightly overestimates the pho-
tometric aperture was chosen for rasterizing a circular aperture onto the pixel grid. It is based
on the method of Horn and illustrated in figure 4.5.

Dphot
2

l

l

Figure 4.5.: Circle rasterizing algorithm
Each center point of the hatched pixel’s border to its neighboring pixel is checked
for being inside the circle. If this is true for at least one center point (which is for
the center point of the southern border), the hatched pixel is marked as included
in the circle.

The algorithm checks each pixel within a square of the size Dphot + 2l for being contained in
the photometric aperture. If at least one center point of the pixels borders satisfies

(xbc − xc)2 + (ybc − yc)2 ≤
(
Dphot

2

)
(4.4)

with the circle center coordinates xc & yc and the border center coordinates xbc & ybc, the
pixel is selected as a circle point. As the algorithm is repeatedly used for the computation
of the photometric aperture’s diameter for a gridded PSF, an efficient implementation of the
algorithm is required. Since each pixel is checked independently from all other pixels, a matrix
calculation using two mesh grids can be used for a fast implementation.

Quadratic Aperture The proceeding for a quadratic aperture is similar to the circular aper-
ture. However, the computation can be reduced to a check of a single pixel in positive and
negative x- & y-direction, because the edges of the square are parallel to the pixel borders.

38

4.3. Configuration File

Dphot
2

l

l

Figure 4.6.: Square rasterizing algorithm
Each center point of the hatched pixel’s border to its neighboring pixel is checked
for being inside the square. If this is true for at least one center point, the hatched
pixel is marked as included in the square.

Integrating the PSF on the Pixel Grid

The distribution of the incident radiation on the detector pixels is determined by the tele-
scope’s point spread function and its pointing jitter. Equation (2.34) describes the calculation
of the percentage of incident radiation per pixel as the integral of the convoluted PSF with
the jitter function per pixel divided by the unbounded integral.
The interface IPSF provides the abstract method mapToPixelMask() for the implementation
of this computation for each PSF representation. Both representations share a common
proceeding for this computation: In a first effort, an interpolation function was used as an
integrand for the pixel integral. However, this proved to be inefficient due to the many
calls to the interpolation function during the integration. To solve this problem, the PSF
is first mapped on a grid nosf finer than the pixel grid. Afterward, the gridded values are
being multiplied with the grid size and summed on a per-pixel basis, resulting in a numerical
approximation of the PSF integral according to the Riemann sum.

4.3. Configuration File

ESBO-ETC is controlled by an XML configuration file that is parsed during the program
startup. The path to this file can be passed to ESBO-ETC via a command-line parameter. It
consists of the four main containers common, astroscene, common_optics and instrument.
Each container may contain several tags with different parameters. A detailed explanation of
all required and optional tags is given in the delivered software documentation.
Generally, each tag consists of a tag name and some parameters as keyword-value-pairs.
According to the XML-standard all values have to be quoted in the configuration file regardless
of the actual data type. The values are converted to the correct data type during the startup
of ESBO-ETC . To avoid errors due to unit mismatches, ESBO-ETC makes use of unit-based
calculations. The units of physical quantities in the configuration file can be either included in
the value-string or can be defined in a second parameter with the same keyword and the suffix

39

4. Implementation

_unit. This situation is shown in the configuration files for the science cases in appendix F.
Before running any computation, ESBO-ETC parses the configuration file and converts every
XML-tag to an object of the class Entry. An UML representation of this class is shown in
figure 4.7.
As an advantage of this conversion, each Entry-object now provides several check-methods
to check each configuration parameter. This is done automatically by ESBO-ETC , after
the configuration file has been parsed. As each tag corresponds to a python class, each of
these classes independently execute the checks of their parameters. This again allows an
easy extension of ESBO-ETC because the configuration check is decentralized and part of the
responsibility of each class.

Entry

+ Entry()
+ parse()
+ check_quantity()
+ check_selection()
+ check_file()
+ check_path
+ check_float

Figure 4.7.: Class Entry for handling XML-tags
Every XML-tag in the configuration file is parsed to an object of class Entry.
This class provides several methods to check the validity of each parameter.

4.4. Output

The results of ESBO-ETC ’s computation are written to stdout of the command-line and to
output files in the output directory defined in the configuration file. In case of an error or a
faulty configuration file, ESBO-ETC offers an advanced logging output to stderr.

4.4.1. Command-Line Output

After ESBO-ETC ran all computations, the results are printed to stdout of the command
line. An exemplary output is shown in table 4.8. Depending on the computed quantities
(SNR, exposure time or sensitivity), the layout may differ. As ESBO-ETC supports batch-
computations for a list of exposure times or SNRs, the output is enumerated corresponding
to the list of input values.

4.4.2. Output Files

ESBO-ETC writes the results of all computations to one or more files in the output directory
defined in the configuration file. The format of the output files is controlled by the config-
uration file. The available formats and the content of the files depend on the used detector
type as the output is written by this component. New detector components can introduce
additional output formats.

40

4.5. Documentation

$./run_esbo-etc
___________ ____ ____ __________________

/ ____/ ___// __)/ __ \ / ____/_ __/ ____/
/ __/ __ \/ __ / / / /_____/ __/ / / / /

/ /___ ___/ / /_/ / /_/ /_____/ /___ / / / /___
/_____//____/_____/____/ /_____/ /_/ ____/

|-----|------------------|--------------|
#	Exposure Time	SNR
1	2.3000e+03 s	2.7273e+00
-----	------------------	--------------

Figure 4.8.: Exemplary command line output for the computation of a SNR

Imaging Detector

The signal, background, read noise and dark current as total collected electrons are written
as matrices to separate files. These files can be either CSV-files or FITS-files depending on
the settings in the configuration file. The data written to these files is reduced to the relevant
region containing the photometric aperture. Nevertheless, the reduction strategy is written
to the file header to allow a lossless restoration of the original pixel matrix.

Heterodyne Detector

In the case of the heterodyne instrument, the spectral signal temperature, background tem-
perature, RMS noise temperature in Kelvins and the SNR are written to a table in a CSV
file in the output directory.

4.4.3. Logging

The verbosity of ESBO-ETC ’s command line output can be controlled by supplying a log
level to the command line parameter -l / –logging. Available logging levels are DEBUG,
INFO,WARNING (the default) and ERROR. Internally, ESBO-ETC makes use of the python
package logging for controlling the software’s verbosity.
On the one hand, this approach allows to focus on the computation results and show only
major program errors. On the other hand, detailed logging output like the DEBUG output
enables the user to keep track of all computational steps and therefore to locate possible
points of failure.

4.5. Documentation

An extensive documentation of ESBO-ETC is available on the ESBO website at https://
esbo-ds.irs.uni-stuttgart.de/esboetcdocs/index.html. This documentation built with
sphinx provides useful information on the installation and operation of ESBO-ETC . This
documentation is intended to be the main reference for all users of ESBO-ETC . It describes
the installation process on all common operating systems and explains how the software

41

https://esbo-ds.irs.uni-stuttgart.de/esboetcdocs/index.html
https://esbo-ds.irs.uni-stuttgart.de/esboetcdocs/index.html

4. Implementation

can be run. To enable the user to build a suitable configuration file for his science case,
the documentation describes all available components and their corresponding parameters in
detail. Numerous configuration code snippets support this description and serve as samples
for the user.
Besides the information for the end-user, the documentation contains an additional chapter for
future developers of ESBO-ETC . This chapter describes ESBO-ETC ’s software architecture
and the used classes in detail. The extension possibilities and all required tasks are described
in a step-by-step guide to enable the future development of the software. As ESBO-ETC
can be used as a python module in other programs, an exemplary code snippet shows the
proceeding for this.
Lastly, the docstrings of all classes and methods used in ESBO-ETC are collected in an API
documentation.

4.6. CI/CD Pipeline

A CI/CD pipeline is used to ensure the proper functioning of ESBO-ETC and to simplify the
deployment of new versions of the documentation. This pipeline is triggered after a commit
to the project’s Gitea repository and executed by a local Jenkins instance. Before any step
of the pipeline is executed, a docker image containing a python installation and all necessary
packages for ESBO-ETC is built. This allows running all steps of the pipeline that require a
python installation independent from the host’s environment. After the docker image is set
up, the following three stages of the pipeline are executed:

1. First of all, the defined build tests are run in the previously created docker container.

2. If all tests passed, the documentation is being built using sphinx in the docker container.

3. Lastly, the HTML files of the documentation are copied to the webroot of ESBO’s
webserver.

42

5. Software Verification & Validation

The V-model for software development foresees a verification and validation of the newly
developed software after the implementation. Even though each unit of the software is con-
tinuously tested by the unit tests in the CI/CD-pipeline (see section 4.6), a verification and
validation of the software has to be conducted. During the verification, the software is checked
against all previously defined requirements. Therefore, a verification scenario is defined and
conducted for each software requirement. The validation on the other hand ensures that the
software is well suited for its intended use.
This chapter describes the verification process and all used verification methods. All ver-
ification cases and their results are listed in appendix E. A detailed documentation of the
verification process, all results and the corresponding manual calculations are given in [19].
The validation of the software is conducted as part of a science case analysis in chapter 6.

5.1. Verification Methods

ESBO-ETC is a modular exposure time calculator offering numerous different components
that can be assembled like the pieces of a puzzle. It allows both the simulation of spatial
as well as spectral detectors. The development was driven by the fact, that no available
exposure time calculator offers these possibilities. This said, the verification of all requirements
requires the use of several existing and reviewed exposure time calculators. In some cases, the
verification has to rely on manual calculations as no other ETC comparably implements these
requirements. This is for example the case for the consideration of the telescope’s pointing
jitter.
This section provides an overview of the used references for the verification and their limita-
tions.

5.1.1. AETC Verification

The Advanced Exposure Time Calculator (AETC) is a publicly available tool1, "aimed to
simulate astronomical images obtained with any (given) telescope and instrument combina-
tion"[20]. It allows modeling an astronomical target either as a black body radiator or from
a file containing the spectral flux densities. Furthermore, the background radiation, atmo-
spheric extinction as well as mirror and instrument efficiencies can be modeled with AETC.
However, only an imaging detector is available.
Thermal emissions of the telescope components as well as multiple optical surfaces cannot be
taken into account directly but have to be included using a workaround. As AETC provides an
interface to include arbitrary sky background emission, the thermal emission of the telescope
can be included as sky background emission. However, the telescope’s thermal emission has
to be properly scaled to take the subsequent atmospheric extinction into account.

1http://aetc.oapd.inaf.it

43

http://aetc.oapd.inaf.it

5. Software Verification & Validation

The effect of multiple imperfect optical surfaces can be taken into account using a second
workaround: the reflection and transmittance coefficients of all surfaces can be multiplied to
give the overall system coefficient which can be inputted to AETC as a single mirror reflection
coefficient.
These workarounds allowed AETC to be used as a reference for the verification of many
requirements. All targets and optical components as well as the imaging detector could be
verified with this exposure time calculator. Beyond that, the airy PSF implementation could
be compared to AETC and verified.

5.1.2. SOFIA SITE Verification

SOFIA Instrument Time Estimator (SITE) is "a web-based tool that provides total integration
time or S/N for a given instrument, filter(s), source type (point, extended, emission line),
and water vapor overburden"[7]. It allows simulating observations with all instruments of
SOFIA including the German Receiver for Astronomy at Terahertz Frequencies (GREAT).
GREAT is a heterodyne spectrometer developed and maintained by a consortium of German
research institutes. Using SITE to simulate observations with GREAT allowed to verify all
requirements of the heterodyne instrument provided by ESBO-ETC .

5.1.3. Verification with Hand Calculations

The effect of pointing jitter is not considered transparently in any other exposure time cal-
culator. For this reason, hand calculations were used for the verification of this requirement.
ESBO-ETC models pointing jitter by a convolution of the PSF with a Gaussian bell curve
with a given standard deviation (eq. (2.34). An analytical solution with manual calculations
of this convolution is possible if the PSF is approximated by another Gaussian bell curve.
This has been done for the airy disk representation of the PSF.

5.1.4. Verification with Zemax

To verify the correct implementation of the Zemax PSF in ESBO-ETC , the photometric
aperture’s diameter as calculated by ESBO-ETC was compared to the result of a computation
carried out in Zemax for a given percentage of encircled energy.

5.1.5. Verification with ESBO-ETC

The implementation of the FITS representation of the airy disk was verified by comparing
the photometric aperture’s diameter for the verified airy disk implementation with the corre-
sponding diameter for a FITS-file containing the same PSF.

5.2. Verification Results

All requirements defined in [5] have been tested during the software verification. The result
of each verification has proven to be within a reasonable acceptance range. All details on the
results are available in [19]. To make the verification reproducible, all used configuration files
and data files are delivered with this thesis.

44

6. Analysis of two Scientific Applications

After the software has been successfully verified against the software requirements, a validation
shall assess the applicability of the new software for its use cases. For this reason, ESBO-
ETC is applied in two science cases, one with an imaging detector and one with a heterodyne
detector. The scientific question, the setup including all sources and the results of both
scenarios are described in the following sections.

6.1. SOFIA FORECAST - Influence of Mirror Coatings on
Integration Time

The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a flying observatory for the
infrared regime aboard a Boeing 747-SP. Its telescope is designed as a cassegrain telescope in
a nasemyth configuration with a usable primary mirror diameter of 2.5 m. The light collected
by the parabolic primary mirror is reflected by an opposing hyperbolic secondary mirror onto
the tertiary mirror that deflects the collected light through the nasemyth tube into the science
instrument[21]. SOFIA allows to change the science instrument during the ground-time and
offers several instruments for different wavelength ranges and resolutions.
SOFIA’s telescope, which was built by a German consortium lead by the DLR and is now
maintained by the DSI, is under continuous development. Among other things, the secondary
mirror (assembly) is of particular interest, as this comparably small component (�350 mm)
with its chop-nod-mechanism is not only the most integrated component of the telescope but
can also be exchanged relatively easy. By replacing the aluminum coating of the mirror with
a better coating like gold, not only the loss along the optical path can be reduced but also
the thermal emission of the mirror. As observations in the FIR suffer from large background
emissions of the telescopic components, this can significantly improve the observations.
To assess the influence of the secondary mirror coating on the integration time, an observation
of the star Pleione (BU Tau / 28 Tau) in the Pleiades (Messier 45) with the instrument
FORECAST shall be simulated using ESBO-ETC . First of all, a simulation with the current
telescope parameters shall be carried out and compared to the SITE. In a second step, the
simulation shall be carried out for the improved coating.
The Faint Object Infrared Camera for the SOFIA Telescope (FORECAST) is one of SOFIA’s
science instruments and offers two 256× 256 pixel arrays for a wavelength range of 5 – 25µm
(SWC) and 25 – 40µm (LWC). A suite of different grisms allows FORECAST to be used not
only as an imaging detector but also as a spectroscopic detector. In the imaging mode, each
array exhibits a quadratic FOV of 3.2′ × 3.2′ with a plate scale of 0.75′′ per pixel. SOFIA’s
telescope beam enters the instrument at the science instrument flange through a dewar window
onto the imaging collimator mirror and then over a fold mirror into the liquid helium cooled
cryostat. The scientist can choose between a dichroic mirror as beamsplitter for simultaneous
operation of both arrays or an empty slot/mirror to use only a single array for the observation.

45

6. Analysis of two Scientific Applications

After passing through FORECAST’s filter array for each channel, two additional fold mirrors
redirect the beam onto the detector[22].

6.1.1. Simulation Parameters

Parameter Value Unit Source

Source temperature 12106 K [23]
Source apparent magnitude 5.19 mag [23]
Cosmic background temperature 2.725 K [24]
Observation altitude 41,000 ft [25]
Elevation angle 40 degree [25]
Water vapor overburden 7.1 µm [25]
Sky temperature 240 K [25]
Primary mirror diameter 2.5 m [25]
Primary mirror reflectivity 0.965 - [25]
Primary mirror temperature 240 K [25]
Secondary mirror reflectivity 0.965 - [25]
Secondary mirror temperature 240 K [25]
Tertiary mirror reflectivity 0.965 - [25]
Tertiary mirror temperature 240 K [25]
Dewar window transmittance 0.88 - [25]
Dewar window temperature 290 K [25]
FORECAST mirror reflectivity 0.97 - [25]
FORECAST mirror temperature 4 K [22]
Collimator mirror temperature 77 K [22]
Filter central wavelength 19.712 µm [25]
Filter bandwidth 5.506 µm [25]
Filter temperature 4 K [22]
Read noise 250 e- [22]
Dark current 7 · 104 e- s–1 [22]
Quantum efficiency [22]
Excess noise 2.5 - [25]
Pixel size 50 µm [25]
Pixel FOV 0.75 arcsec [25]
Well depth 1.6 · 106 e- [22]
Photometric aperture diameter 5.3 arcsec [25]

Table 6.1.: Parameters and the according sources used for the simulation of an observation of
the star Pleione with SOFIA/FORECAST. Note that the dark current and read
noise are given for the full array and not per pixel.

Each component of the telescope and the detector has to be modeled in ESBO-ETC to conduct
a realistic simulation. Therefore the characteristic properties of each component have to be
collected. The parameters used for the simulation are listed in table 6.1 and the corresponding
ESBO-ETC configuration file is shown in appendix F.1 and executable on Code Ocean[26].

46

6.1. SOFIA FORECAST - Influence of Mirror Coatings on Integration Time

The working focal number N of the setup can be calculated from the pixel size l, the pixel
FOV β and the aperture diameter Dap as

N =
f

Dap
=

l

2 ·Dap · tan (β)
= 5.50. (6.1)

The mean radiant flux density of the source required by SITE can be obtained by integrating
equation (2.9) over the filter range λ0 – λ1 and dividing by the filter’s bandwidth ∆λ

Eλ =
1

λ1 − λ0
·
∫ λ1

λ0

Eλ,P lanck dλ = 8.7397 · 10−16 W

m2 · µm
. (6.2)

FORECAST distinguishes between the responsive quantum efficiency and the detective quan-
tum efficiency (see [22] for further information). The detective quantum efficiency was used
for the simulations.

6.1.2. Simulation Results

The accuracy of an ESBO-ETC simulation with the parameters given in table 6.1 has to be
determined before the influence of different mirror coatings on the required integration time
can be assessed. Therefore, the same simulation is conducted with ESBO-ETC and SITE
to gain an insight into ESBO-ETC ’s accuracy. Different mirror coatings are simulated in a
second step to assess their influence.

Comparison of ESBO-ETC and SITE

A simulation was conducted with SITE and ESBO-ETC using the parameters given above
to compute the integration time required to reach a SNR of 4. Even though the observation
clearly suffers from high background radiation and requires chopping and nodding, the sim-
ulation is carried out for a single exposure without chopping. This said the readout noise
of the detector is only considered once and not for each chop frame. This proceeding is in
accordance to SITE.
The results of both computations are listed in table 6.2. The result of ESBO-ETC is very
close to SITE and verifies therefore once more the implementation of all equations. The slight
difference of 16 s can be attributed to a possible differing calculation of the number of pixels
contained in the virtual photometric aperture.

Tool SNR Integration Time

SITE 4.0 252 s
ESBO-ETC 4.0 268 s

Table 6.2.: Result of the first simulation to compare ESBO-ETC to SITE.

Analysis of Improved Mirror Reflectivity

To analyze the influence of different mirror coatings on the required integration time for
an observation of Pleione a gold coating is assumed for the secondary mirror and for both

47

6. Analysis of two Scientific Applications

the primary mirror and the secondary mirror. The reflectivity coefficients used are listed in
table 6.3.

Parameter Value Unit

Primary mirror reflectivity 0.99 -
Secondary mirror reflectivity 0.99 -

Table 6.3.: Parameters and the according sources used for the simulation of an observation of
the star Pleione with SOFIA FORECAST. Note that the dark current and read
noise are given for the full array and not per pixel.

Conducting the ESBO-ETC simulation a second time with the improved parameters leads to
the results in table 6.4. The results clearly show a reduction of approximately 10% of the
required integration time for each gold-coated mirror. This result means, that more observa-
tions can be conducted per science flight than before. However, the number of observations
does not scale linearly to the integration time due to calibration and slewing overheads. A
re-coating of the primary mirror is furthermore unrealistic due to the high risk of damage
during removal and coating. The secondary mirror, on the other hand, can be easily removed
and, in case of damage, manufactured a second time. This said a new, more efficient coating
of the secondary mirror is advisable.

Improvement SNR Integration Time Improvement

Gold coated M2 4.0 239 s 10.8%
Gold coated M1 + M2 4.0 212 s 20.9%

Table 6.4.: Result of the second simulation with improved mirror coatings.

48

6.2. ESBO Heterodyne Instrument - HCl+ absorption towards W31C

6.2. ESBO Heterodyne Instrument - HCl+ absorption towards
W31C

"Hydrides play a central role in interstellar chemistry, both as significant reservoirs of heavy el-
ements and as critical intermediaries in the pathways leading to more complex molecules"[27].
"Because the chemical pathways leading to the formation of interstellar hydrides are fairly
simple, the analysis of the observed abundances is straightforward, and provides key informa-
tion about the physical and chemical conditions within the environments in which hydrides
are found"[28].
The PRISMAS program (Probing InterStellar Molecules with Absorption line Studies) was
conducted on the satellite observatory Herschel using the Heterodyne Instrument for the Far
Infrared (HIFI) to observe around 20 molecules towards 8 sources. Because of the molecule’s
small moments of inertia, their rotational transitions lie at high frequencies that are often
inaccessible for ground-based telescopes[28] which is the reason why Herschel was chosen.
Due to Herschel’s retirement in 2013, no space-based observatory is currently available for
observations in this frequency range.
To overcome this issue, the observational capabilities of a heterodyne instrument like GREAT
on ESBO will be assessed in this section. For this reason, the observation of the HCl+ absorp-
tion line (1444.2 GHz / 207.6 µm) in the interstellar medium towards W31C, as conducted in
the PRISMAS program[28], will be modeled with ESBO-ETC . Westerhout 31C or G10.6-0.4
located in the constellation of Sagittarius is a complex of star formation regions in the Milky
Way. First of all, an ESBO-ETC simulation is carried out for Herschel HIFI to gain insight
into the accuracy of the chosen model. The same observation will be subsequently simulated
in a second step using the ESBO telescope and the instrument parameters of GREAT.

6.2.1. Simulation Parameters

Again, all parameters of the simulated components have to be collected in advance of the
simulations. A complete list of all used parameters is given in table 6.5 for Herschel and 6.6
for ESBO.
As a star-forming region, W31C is clearly a largely extended source that can be associated with
a brightness temperature. The Herschel Science Archive (HSA) gives a DSB temperature of
TA
∗
,DSB = 10.5 K for the observation of W31C1. Due to an approximately equal distribution

between the USB and the LSB, the DSB temperature appears as twice its real value[15].
Therefore TA∗,SSB = 5.25 K. Even though the quantity TA∗ is calibrated to exclude several
instrumental effects, it is still a HIFI specific quantity and yet does not take any telescopic
losses of Herschel into account. The main beam efficiency ηmb = 0.58 takes these losses
into account which is the reason why the antenna temperature has to be converted into the
main beam temperature[29] using equation (2.44). This yields Tmb = 8.7 K which is equal to
W31C’s brightness temperature and a Planck black body temperature of TB = 31.6 K.
A comparable temperature arises for an observation2 of W31C using the Photodetector Array
Camera and Spectrometer (PACS) instrument of Herschel that was also conducted in the
scope of PRISMAS. The Herschel Science Archive provides a spectral flux density value from
70 µm up to 190 µm which can be extrapolated to the line wavelength of 207.6 µm which

1Observation ID: 1342206601
2Observation ID: 1342217945

49

6. Analysis of two Scientific Applications

gives a spectral flux density of approximately Eν = 1200 Jy
spaxel . The PACS handbook [30]

gives a spaxel size of 9.4”× 9.4” resulting in a spectral radiance of LΩ,ν = 5.77 W
m2·Hz·sr and a

brightness temperature of TB = 32.0 K.
The Herschel Science Archive gives a DSB line antenna temperature of TA∗,DSB = 9.5K which
equals a single sideband antenna temperature of TA∗,DSB = 4.25 K as the line is only present
in the upper sideband. This leads to a line extinction of 19% or an equivalent transmission
of 81%.
As mentioned before, the main beam efficiency ηmb takes the telescopic losses of Herschel into
account. As ESBO-ETC simulates the telescope components and their losses separately, the
main beam efficiency has to be normalized for the telescopic losses by dividing the main beam
efficiency by the telescope efficiency. This yields ηmb = 0.64.
W31C is both located in the Milky Way and close to the ecliptic which is the reason why the
galactic cirrus and zodiacal background radiation is considered in the simulations.
The corresponding configuration file for the simulation is given in appendix F.2 and executable
on Code Ocean[31].

Parameter Value Unit Source

Source temperature 31.6 K HSA
HCL+ absorption 0.19 - HSA
Zodiacal light temperature 274 K [32]
Galactic cirrus temperature 20 K [33]
Cosmic background temperature 2.725 K [24]
Primary mirror diameter 3.5 m [34]
Primary mirror reflectivity 0.95 - [34]
Primary mirror temperature 88 K HSA meta info
Secondary mirror reflectivity 0.95 -
Secondary mirror temperature 84 K HSA meta info
Aperture efficiency 0.6 - [15]
Main beam efficiency 0.64 - [15]
Receiver temperature 1050 K [15]
Antenna forward efficiency 0.96 - [15]
Local oscillator frequency 1441.5 GHz HSA meta info
Resolution 1.1 MHz [28]
Integration time 404.48 s HSA meta info

Table 6.5.: Parameters and the according sources used for the simulation of an observation of
the HCL+ absorption towards W31C with Herschel/HIFI. Note that the secondary
mirror reflectivity was assumed to be the same as the primary mirror.

6.2.2. Simulation Results

Before a heterodyne instrument on ESBO can be simulated, the modeled target and back-
ground emissions have to be validated against the performed observation with Herschel/HIFI.
Both results are shown and explained in this section.

50

6.2. ESBO Heterodyne Instrument - HCl+ absorption towards W31C

Parameter Value Unit Source

Observation altitude 40.0 km [1]
Zenith angle 0 degree
Water vapor overburden 7.1 µm [25]
Sky temperature 265 K [35]
Primary mirror diameter 5 m [1]
ESBO mirror reflectivity 0.95 - P. Maier
Primary mirror temperature -15 °C [36]
M2, M3, M4, M5 temperature -20 °C [36]
Aperture efficiency 0.55 - [7]
Main beam efficiency 0.67 - [7]
Receiver temperature 1000 K [7]
Antenna forward efficiency 0.97 - [7]

Table 6.6.: Alternative and supplementary parameters and the according sources used for the
simulation of an observation of the HCL+ absorption towards W31C with ESBO.
Note that the computation of the atmospheric transmission using ATRAN was
performed for the maximum allowed altitude of 29.1 km and not for 40 km.

Comparison of ESBO-ETC and HSA

The Herschel Science Archive gives an RMS noise temperature of ∆Trms = 0.222 K for the
HIFI observation which yields an SNR of 42.7 with the DSB line antenna temperature given
above. The result of the simulation with ESBO-ETC is given in table 6.7 which shows a
good agreement with the HSA data. This means, that the used models for the target and
background emissions are valid and can be used for the simulation of a heterodyne instrument
aboard of ESBO.

Tool SNR Integration Time

HSA 42.7 404.48 s
ESBO-ETC 42.7 418.9 s

Table 6.7.: Result of the first simulation to compare ESBO-ETC to the observation results in
HSA.

Analysis of a Heterodyne Instrument on ESBO

The capabilities of a heterodyne instrument on ESBO with similar properties like GREAT
has been assessed by simulating the observation of HCL+ towards W31C with ESBO-ETC .
The result of this simulation is listed in table 6.8 which shows a lower performance capability
of ESBO as compared to Herschel. The main reason for this is the significantly higher mirror
temperature of ESBO (90 K as compared to 250 K). Furthermore, ESBO makes use of three
additional mirrors to decouple the instruments from the telescope elevation movement which
reduce the collected radiation. The used configuration file is shown in appendix F.2 and the
simulation is executable on Code Ocean[37].

51

6. Analysis of two Scientific Applications

Nevertheless, this result is very promising because it clearly shows that ESBO is able to
perform observations in this wavelength regime within a realistic integration time. As the
reflectivity coefficients of all mirrors are only worst-case estimates by P. Maier, the real per-
formance of a heterodyne instrument on ESBO can be better than simulated.

SNR Integration Time Deviation

42.7 533.1 s +31.8%

Table 6.8.: Result of the second simulation with improved mirror coatings.

52

7. Conclusion

To conclude, the development of the modular exposure time calculator was successful. All
equations required for the computations have been derived and collected. A state-of-the-art
software architecture was developed ensuring the modularity of the software. Furthermore,
the chosen software architecture enables easy future updates and extensions of the ETC.
A documentation provides information on the installation and usage of ESBO-ETC for all
users of the software. Additional information is given for future developers that help to
understand the structure of the code and how extensions can be developed.
A careful verification of the software was successfully conducted ensuring the fulfillment of
all requirements. Subsequently, ESBO-ETC was validated by means of two science cases. A
simulation of an observation with SOFIA/FORECAST was conducted on the one hand and
compared to the SOFIA exposure time calculator SITE. The influence of different coatings of
the primary and secondary mirrors on the required integration time was analyzed using ESBO-
ETC . Furthermore, the performance capabilities of a heterodyne instrument like GREAT on
ESBO were assessed with a simulated observation of the HCL+ absorption towards W31C
that was previously performed by Herschel/HIFI. It has been shown that even though ESBO
cannot achieve the same sensitivity as Herschel, it promises a great benefit for the scientific
community in this wavelength regime that is inaccessible from the ground.
The thesis is delivered with a set of documents for the software requirements[5] and verifica-
tion[19] as well as all input files for the verification and validation cases. The source code of
ESBO-ETC ’s first version is also included in the delivered bundle.

7.1. Future Upgrades & Extensions

ESBO-ETC is designed to make future updates and extensions as easy as possible. Even
though the first version is not only a proof of concept but already a mature software that can
be used for many use cases, it shall pave the road to an extensive exposure time calculator
that is widely used.
A milestone to come to this state is the development of a graphical user interface (GUI) that
allows the users of ESBO-ETC to create the required configuration in a visually appealing
environment rather than in an XML-editor. This GUI should enable the user to not only create
a configuration file but also to conduct a simulation and analyze the results. Like any modern
application, ESBO-ETC ’s GUI should be served as a web application that can be accessed
and used by people all around the world over the internet and does not require a complicated
installation process. An architecture for such an application could consist of a python flask -
server1 in the back-end that imports the ESBO-ETC python module and a vue.js2 front-end.
The framework Rete.js3 enables visual programming by dragging and connecting different

1https://flask.palletsprojects.com
2https://vuejs.org
3https://rete.js.org/

53

https://flask.palletsprojects.com
https://vuejs.org
https://rete.js.org/

7. Conclusion

types of nodes. Each component offered by ESBO-ETC could be represented by a node and
connected to other nodes to model the radiative transfer path.
Another possibility to create a graphical user interface for editing the configuration file are
XML stylesheets that enable most web browsers to display XML in a predefined layout. This
layout may provide select inputs and buttons to alter and add the different components.
Besides the development of a GUI, some minor improvements can be added to the existing
software. Considering the polarization of the emitted radiation of all components would allow
a more precise simulation of the polarization-sensitive heterodyne instrument. This is for
example useful for the simulation magnetic field observations that are made by measuring the
polarization of the radiation strayed by dust grains in the magnetic field.
Furthermore, the antenna pattern could be included in the computations of the heterodyne
instrument like it is the case for the PSF for the imaging detector. This improvement might
enhance the usability of ESBO-ETC for the developers of heterodyne detectors.
Even though ESBO-ETC natively supports the computation of the atmospheric transmission
using an online version of ATRAN and parses output files of other tools, the implementation
of an interface to other atmospheric transmission calculators would be beneficial. This is
due to the fact that ATRAN is limited to a maximum observation altitude of 29.1 km which
might be problematic for balloon observatories in certain wavelength regimes. To overcome
this issue an interface for the transmission calculator am could be implemented, as am has
no such limitation.
Lastly, extensive plotting functionalities could be added to ESBO-ETC to enable the creation
of plots at any point in the optical path. This is possible by introducing a new optical compo-
nent that just forwards the incoming radiation to the calling component and simultaneously
plots these quantities. Additional plotting functionalities could be added to the detector com-
ponents to create plots of the detected signals. Both additions not only improve the result
output but also enable the user to track issues during the development of a configuration file

54

A. Standard photometric systems

The standard photometric systems used for flux normalization of the black body target in
section 2.2 are tabulated below.

Spectral
band

Central wavelength
λ0 in µm

Bandwidth
∆λ0 in µm

Eλ in W
m2·um

U 0.365 0.068 4.27 · 10−8

B 0.44 0.098 6.61 · 10−8

V 0.55 0.089 3.64 · 10−8

R 0.7 0.22 1.74 · 10−8

I 0.9 0.24 8.32 · 10−9

J 1.25 0.3 3.18 · 10−9

H 1.65 0.4 1.18 · 10−9

K 2.2 0.6 4.17 · 10−0

L 3.6 1.2 6.23 · 10−11

M 4.8 0.8 2.07 · 10−11

N 10.2 2.5 1.23 · 10−12

Table A.1.: Standard photometric systems
Prominent spectral bands, their central wavelength and bandwidth and the cor-
responding spectral flux density of a 0 mag star are tabulated using the Vega
magnitude system[38].

55

B. Derivation of ExoSim

ExoSim does not provide a public paper about the physics used for the calculations. However,
the source code is publicly available under the reproducible research software license. The
following derivation is based on lines 88 to 96 of ExoSim’s source code 1 and tries to show the
parallels to the derivation used in this thesis.
The flux Φν received from an extended source with spectral radiance LΩ,ν can be calculated
as

Φν = LΩ,ν · Ωap · l2. (B.1)

By definition, the telescope’s FOV solid angle Ωap is given by

Ωap =
A

r2
(B.2)

where A is the spherical surface area and r is the radius of the considered sphere as shown in
figure B.1.

Dap

F

r

α

Figure B.1.: Sketch for the calculation of the telescope’s FOV solid angle Ωap

The spherical surface area A of a cone with an apex angle α is given by a formula collection
as

A = 2π · r2 ·
(

1− cos
(α

2

))
. (B.3)

Using trigonometric functions, the cone’s apex angle α is given by

α

2
= arccos

 f√
f2 +

(
Dap

2

)2

 = arccos

 N√
N2 + 1

4

 (B.4)

1https://github.com/ExoSim/ExoSimPublic/blob/d690dcd2c89325b0c617b8de9b66177ced57b016/
exosim/modules/instrument.py#L88-L96

57

https://github.com/ExoSim/ExoSimPublic/blob/d690dcd2c89325b0c617b8de9b66177ced57b016/exosim/modules/instrument.py#L88-L96
https://github.com/ExoSim/ExoSimPublic/blob/d690dcd2c89325b0c617b8de9b66177ced57b016/exosim/modules/instrument.py#L88-L96

B. Derivation of ExoSim

as shown in sketch B.1. Plugging equation (B.4 into B.3) leads to

A = 2π · r2 ·

1− N√
N2 + 1

4

 = 2π · r2 ·
N2 + 1

4 −N ·
√
N2 + 1

4

N2 + 1
4

(B.5)

which can be simplified to

A = π · r2 · 1

4N2 + 1
. (B.6)

The error ε of this approximation is given by

ε =
2 ·

N2+ 1
4
−N ·

√
N2+ 1

4

N2+ 1
4

− 1
4N2+1

2 ·
N2+ 1

4
−N ·

√
N2+ 1

4

N2+ 1
4

=
2N2 + 1

4 − 2N ·
√
N2 + 1

4

N2 + 1
4 −N ·

√
N2 + 1

4

(B.7)

which converges to zero for N → ∞. The error is bounded by 0.2481% for N > 5. This
approximated equation in turn can be plugged together with (B.2 into eq. B.1) resulting in

Φν = LΩ,ν · l2 ·
π

4N2 + 1
. (B.8)

This final equation is equivalent to equation (2.26) and therefore confirms the approach used
in this thesis.

58

C. Approximation Error for the Obstructed
Extended Source

The approximations used to get from equation (2.30 to 2.31 in section 2.4.1 are examined in
this chapter. As the error of these approximations depends on both the value of focal number
N as well as the value of the obstruction ration o and the ratio of the radiances LΩ,ν ,1,obs and
LΩ,ν ,1, figure C.1) shows the relative approximation error ε with respect to these values. The
relative approximation error is calculated by

ε =
Φν ,1−2,simplified − Φν ,1−2

Φν ,1−2
=

o (1− o) · (LΩ,ν ,1 − LΩ,ν ,1,obs)

LΩ,ν ,1,obs · o (4N2 + 1) + LΩ,ν ,1 · 4N2 (1− o)
(C.1)

from equation (2.30 and 2.31).

0.0 0.2 0.4 0.6 0.8 1.0

−0.4

−0.2

0.0

0.2

0.4

Aperture Obstruction o

R
el
at
iv
e
E
rr
or
ε
in

%

LΩ,ν,1

LΩ,ν,1,obs
= 0.1

LΩ,ν,1

LΩ,ν,1,obs
= 1.0

LΩ,ν,1

LΩ,ν,1,obs
= 10.0

f = 5
f = 10
f = 20

Figure C.1.: Relative approximation error in the derivation of the received spectral flux of an
obstructed extended source for different obstruction ratios o
The line color encodes different ratios of the source radiance to the obstructing
component’s radiance and different focal numbers N are indicated by the line
pattern.

Equation (C.1 as well as figure C.1 clearly show, that the error tends to zero for N) approach-
ing infinity

lim
N→∞

ε = 0.

However, telescopes in reality typically have a focal number N in the order of 101–102. There-
fore the contribution of the obstruction ratio and the component’s radiances has to be further
assessed.

59

C. Approximation Error for the Obstructed Extended Source

As indicated in figure (C.1, the error for unobstructed radiation transportation (o = 0) is zero
whereas the error stays limited for 0 ≤ o) ≤ 1 with the maximal error

max (ε) ≈

√
LΩ,ν ,1

LΩ,ν ,1,obs
− 1

4N2(
√

LΩ,ν ,1

LΩ,ν ,1,obs
+ 1) + 1

at o ≈ 1− 1√
LΩ,ν ,1

LΩ,ν ,1,obs
+ 1

.

For an equal spectral radiance of both the obstructing component and the incoming radiation,
the approximation error is zero and increases for differing values as shown in figure C.1.
By limiting the focal number to N ≥ 5, the relative approximation error is bounded by 1% for
all obstruction ratios and all radiance ratios. This error is reasonable and therefore justifies
the approximations.

60

D. Class Diagram

<<Interface>>
IRadiant

+ calcSignal(): (SpectralQty, string, real)
+ calcBackground(): SpectralQty

ATarget

- sfd: SpectralQty
- wl_bins: Quantity

+ ATarget(sfd: SpectralQty,
 wl_bins: Quantity)
+ calcSignal(): (SpectralQty, string, real)
+ calcBackground(): SpectralQty
+ checkConfig(conf: Entry): string

AOpticalComponent

- transreflectivity: SpectralQty
- noise: spectralQty
- obstruction: real
- obstructor_temp: Quantity
- obstructor_emissivity: real

+ AOpticalComponent(parent: IRadiant,
 obstruction: real, obstructor_temp: real,
 obstructor_emissivity: real)
+ AOpticalComponent(parent: IRadiant,
 transreflectivity: SpectralQty, noise: SpectralQty,
 obstruction: real, obstructor_temp: Quantity,
 obstructor_emissivity: real)
+ calcSignal(): (SpectralQty, string, real)
+ calcBackground(): SpectralQty
propagate(rad: SpectralQty): SpectralQty
ownNoise(): SpectralQty
+ checkConfig(conf: Entry): string

1

BlackBodyTarget

- band: dict

+ BlackBodyTarget(wl_bins: Quantity,
 temp: Quantity, magnitude: Quantity,
 band: string)
+ checkConfig(conf: Entry): string

FileTarget

+ FluxDensityTarget(file: string,
 wl_bins: Quantity)
+ checkConfig(conf: Entry): string

Atmosphere

+ Atmosphere(parent: IRadiant,
 transmittance: string, emission: string,
 temp: Quantity)
+ Atmosphere(parent: IRadiant,
 transmittance: string)
+ checkConfig(conf: Entry): string

AHotOpticalComponent

+ AHotOpticalComponent(parent: IRadiant,
 emissivity: SpectralQty, temp: Quantity, obstruction: real,
 obstructor_temp: Quantity, obstructor_emissivity: real)
ownNoise(): SpectralQty
- gb_factory(temp: Quantity, em: real): Callable
+ checkConfig(conf: Entry): string

StrayLight

+ StrayLight(parent: IRadiant,
 emission: string)
+ checkConfig(conf: Entry): string

SpectralQty

+ wl: Quantity
+ qty: Quantity
fill_value: real

+ SpectralQty(wl: Quantity, qty: Quantity,
 fill_value: real)
+ fromFile(file: string, wl_unit_default: Quantity,
 qty_unit_default: Quantity, fill_value: real):
 SpectralQty
+ rebin(wl: Quantity): SpectralQty
- __eq__(other: SpectralQty): bool
- __add__(other: SpectralQty): SpectralQty
- __sub__(other: SpectralQty): SpectralQty
- __mul__(other: SpectralQty): SpectralQty
- __str__(precision: int): string
- __truediv__(other: SpectralQty): SpectralQty
- __pow__(other: real): Spectral Qty
+ integrate(): u.Quantity

helpers

+ isLambda(obj: object): bool
+ rasterizeCircle(grid: ndarray, radius: real,
 xc: real, yc: real)
+ readCSV(file: str, units: Unit[],
 format_: str): Table
+ plot(sqty: spectralQty): void

Mirror

+ Mirror(parent: IRadiant, reflectance: string,
 emissivity: string, temp: Quantity,
 obstruction: real, obstructor_temp: Quantity,
 obstructor_emissivity: real)
propagate(rad: SpectralQty): SpectralQty
+ checkConfig(conf: Entry): string

Lens

+ Lens(parent: IRadiant, transmittance: string,
 emissivity: string, temp: Quantity,
 obstruction: real, obstructor_temp: Quantity,
 obstructor_emissivity: real)
propagate(rad: SpectralQty): SpectralQty
+ checkConfig(conf: Entry): string

Filter

+ Filter(parent: IRadiant,
 band: string, em: string,
 temp: real, obstruction: real,
 obstructor_temp: real,
 obstructor_emissivity: real)
+ Filter(parent: IRadiant,
 tr: string, em: string,
 temp: real, obstruction: real,
 obstructor_temp: real,
 obstructor_emissivity: real)
+ Filter(parent: IRadiant,
 start: real, end: real,
 em: string, temp: real,
 obstruction: real,
 obstructor_temp: real,
 obstructor_emissivity: real)
propagate(rad: SpectralQty): SpectralQty
+ checkConfig(conf: Entry): string

parent

ASensor

parent: IRadiant

+ ASensor(parent: IRadiant)
- calcIncomingRadiation(): (SpectralQty, SpectralQty, float)
+ getSNR(exp_time: Quantity): Quantity
+ calcSNR(background: SpectralQty, signal: SpectralQty,
 obstruction: float, exp_time: Quantity): Quantity
+ getExpTime(snr: Quantity): Quantity
+ calcExpTime(background: SpectralQty, signal: SpectralQty,
 obstruction: float, snr: Quantity): Quantity
+ getSensitivity(exp_time: Quantity, snr: Quantity,
 target_brightness: Quantity): Quantity
+ calcSensitivity(background: SpectralQty, signal: SpectralQty,
 obstruction: float, exp_time: Quantity, snr: Quantity,
 target_brightness: Quantity): Quantity
+ check_config(sensor: Entry, conf: Entry): str

parent

1

Imager

- quantum_efficiency: spectralQty
- pixel_geometry: Quantity
- pixel_size: Quantity
- read_noise: Quantity
- dark_current: Quantity
- well_capacity: Quantity
- f_number: real
- center_offset: Quantity
- shape: string
- contained_energy: string
- contained_pixels: Quantity
- common_conf: Entry
- central_wl: Quantity

+ Imager(parent: IRadiant, quantum_efficiency: Quantity,
 pixel_geometry: Quantity, pixel_size: Quantity,
 read_noise: Quantity, dark_current: Quantity,
 well_capacity: Quantity, f_number: real,
 common_conf: Entry, center_offset: Quantity,
 shape: string, contained_energy: string,
 contained_pixels: Quantity)
+ calcSNR(exp_time: Quantity): Quantity
+ calcExpTime(snr: Quantity): Quantity
+ calcSensitivity(exp_time: Quantity, snr: Quantity,
 target_brightness: Quantity): Quantity
+ check_config(sensor: Entry, conf: Entry): str
- printDetails(signal: Quantity, background: Quantity,
 read_noise: Quantity, dark: Quantity, prefix: string): void
- output(signal: Quantity, background: Quantity,
 read_noise: Quantity, dark: Quantity, prefix: string): void
- exposePixels(): (Quantity, Quantity, Quantity, Quantity)
- calcPhotometricAperture(obstruction: real): Quantity
- calcIncomingElectronCurrent():
 (Quantity, string, real, Quantity)

Entry

val: string

+ Entry(kwargs)
+ parse(xml: Element)
+ __call__(): str
+ check_quantity(name: string,
 unit: Unit): string
+ check_selection(name: string,
 choices: string[]): string
+ check_file(name: string): string
+ check_path(name:string): string
+ check_float(name:string): string

Configuration

+ conf: Entry

+ Configuration(file: string)
- parser(parent: Element)
- calc_metaoptions()
- calc_metaoption_wl_delta()
- check_config()
- check_optical_components(
 conf: Entry[]): string

BeamSplitter

+ BeamSplitter(parent: IRadiant,
 transmittance: string, emissivity: string,
 temp: Quantity, obstruction: real,
 obstructor_temp: Quantity,
 obstructor_emissivity: real)
propagate(rad: SpectralQty): SpectralQty
+ checkConfig(conf: Entry): string

instantiate

<<Interface>>
IPSF

+ calcReducedObservationAngle(
 contained_energy: string, jitter_sigma: Quantity,
 obstruction: real): Quantity
+ mapToPixelMask(mask: PixelMask,
 jitter_sigma: Quantity, obstruction: real): PixelMask
rebin(arr: ndarray, factor: real)

Airy

- f_number: real
- wl: Quantity
- d_aperture: Quantity
- osf: real
- pixel_size: Quantity
- psf_jitter: ndarray

+ Airy(f_number: real, wl: Quantity, d_aperture: Quantity,
 osf: real, pixel_size: Quantity)
+ calcReducedObservationAngle(
 contained_energy: string, jitter_sigma: Quantity,
 obstruction: real): Quantity
+ mapToPixelMask(mask: PixelMask,
 jitter_sigma: Quantity, obstruction: real): PixelMask
- airy(x: ndarray, obstruction: real): ndarray
- airy_int(x: real, obstruction: real): real

AGriddedPSF

- f_number: real
- wl: Quantity
- d_aperture: Quantity
- osf: real
- pixel_size: Quantity
- psf: ndarray
- grid_delta: Quantity
- center_point: int[]
- center_point_os: int[]
- psf_os: ndarray
- psf_osf: real

+ AGriddedPSF(psf: ndarray, f_number: real,
 wl: Quantity, d_aperture: Quantity,
 osf: real, pixel_size: Quantity, grid_delta: Quantity,
 center_point: float[])
+ calcReducedObservationAngle(
 contained_energy: string, jitter_sigma: Quantity,
 obstruction: real): Quantity
+ mapToPixelMask(mask: PixelMask,
 jitter_sigma: Quantity, obstruction: real): PixelMask
- calcPSF(jitter_sigma: Quantity)

1

instantiate

PixelMask

+ pixel_geometry: Quantity
+ pixel_size: Quantity
+ center_ind: [real, real]
+ psf_center_ind: [real, real]

+ PixelMask(pixel_geometry: Quantity,
 pixel_size: Quantity,
 center_offset: Quantity)
+ __array_finalize__(obj: object)
+ createPhotometricAperture(shape: string,
 radius: Quantity, center_offset: Quantity)

numpy

ndarray

SpinnerHandler

spinner: Halo
spinning: bool

+ SpinnerHandler(spinner: Halo, level: int)
+ filter(record: Record): bool
+ emit(record: Record): Record

logging

Handler

output

+ printSNR(exp_time: Quantity,
 snr: Quantity): void
+ printExposureTime(exp_time: Quantity,
 snr: Quantity): void
+ printSensitivity(exp_time: Quantity,
 snr: Quantity, sensitivity: Quantity): void

CosmicBackground

+ CosmicBackground(parent: IRadiant,
 temp: Quantity, emissivity: real)
+ checkConfig(conf: Entry): string

Heterodyne

- aperture_efficiency: real
- main_beam_efficiency: real
- receiver_temp: Quantity
- eta_fss: real
- lambda_line: Quantity
- kappa: float
- common_conf: Entry
- n_on: real

+ Imager(parent: IRadiant, aperture_efficiency: real,
 main_beam_efficiency: real, receiver_temp: Quantity,
 eta_fss: real, lambda_line: Quantity, kappa: real,
 common_conf: Entry, n_on: real)
+ calcSNR(exp_time: Quantity): Quantity
+ calcExpTime(snr: Quantity): Quantity
+ calcSensitivity(exp_time: Quantity, snr: Quantity,
 target_brightness: Quantity): Quantity
+ check_config(sensor: Entry, conf: Entry): str
- printDetails(t_sys: Quantity, delta_nu: Quantity,
 t_rms: Quantity, t_signal: Quantity, prefix: string): void
- output(t_signal: SpectralQty, t_background: SpectralQty,
 r_rms: SpectralQty, name: string, snr: SpectralQty,
 exp_time: SpectralQty, sensitivity: SpectralQty): void
- calcTemperatures(): (Quantity, Quantity)

AFactory

+ AFactory(common_conf: Entry)
+ create(options: Entry, parent: IRadiant)
+ collectOptions(options: Entry): dict

ARadiantFactory

+ ARadiantFactory(common_conf: Entry)
+ create(options: Entry,
 parent: IRadiant): IRadiant

TargetFactory

+ TargetFactory(common_conf: Entry)
+ create(options: Entry,
 parent: IRadiant): ATarget

OpticalComponentFactory

+ OpticalComponentFactory(
 common_conf: Entry)
+ create(options: Entry,
 parent: IRadiant): AOpticalComponent
+ fromConfigBatch(conf: Entry,
 parent: IRadiant): AOpticalComponent

SensorFactory

+ SensorFactory(common_conf: Entry)
+ create(options: Entry,
 parent: IRadiant): ATarget

instantiate

ATRAN

+ ATRAN(parent: IRadiant,
 transmittance: string, altitude: Quantity,
 wl_min: Quantity, wl_max: Quantity,
 latitude: Quantity: water_vapor: Quantity,
 n_layers: int, zenith_angle: Quantity,
 resolution: int, temp: Quantity)
- call_ATRAN(...)
- parse_ATRAN(table: str)
+ checkConfig(conf: Entry): string

Zemax

+ Zemax(file: string, f_number: real,
 wl: Quantity, d_aperture: Quantity,
 osf: real, pixel_size: Quantity)

FITS

+ FITS(file: string, f_number: real,
 wl: Quantity, d_aperture: Quantity,
 osf: real, pixel_size: Quantity)

Figure D.1.: Complete class diagram of ESBO-ETC
The diagram can be found in full resolution in the documentation of ESBO-
ETC https://esbo-ds.irs.uni-stuttgart.de/esboetcdocs/developer/
developer_documentation.html#software-architecture.

61

https://esbo-ds.irs.uni-stuttgart.de/esboetcdocs/developer/developer_documentation.html#software-architecture
https://esbo-ds.irs.uni-stuttgart.de/esboetcdocs/developer/developer_documentation.html#software-architecture

E. Verification Results

The description and results of all verification cases as explained in section 5 are listed in table
E.1

Requirement Method Result Deviation

3.2a) Blackbody target AETC SNRAETC = 53.77
SNRESBO−ETC = 54.19

0.78%

3.2b) File target ESBO-ETC (SNRAETC = 53.78)
SNRESBO−ETC = 54.19

0.76%

3.2 Extended target SITE SNRSITE = 4.00
SNRESBO−ETC = 3.81

4.75%

3.3 Atmosphere AETC SNRAETC = 52.78
SNRESBO−ETC = 53.09

0.59%

3.4 Cosmic background AETC SNRAETC = 34.56
SNRESBO−ETC = 33.55

2.92%

3.5 Stray Light AETC SNRAETC = 53.17
SNRESBO−ETC = 53.50

0.62%

3.7a) Mirror AETC SNRAETC = 50.85
SNRESBO−ETC = 51.23

0.75%

3.7b) Lens AETC SNRAETC = 50.85
SNRESBO−ETC = 51.23

0.75%

3.7c) Beam splitter AETC SNRAETC = 50.85
SNRESBO−ETC = 51.23

0.75%

3.7d)1) Filter from band AETC SNRAETC = 46.51
SNRESBO−ETC = 46.86

0.75%

3.7d)2) Filter from file AETC SNRAETC = 41.32
SNRESBO−ETC = 41.63

0.75%

3.7d)3) Custom filter AETC SNRAETC = 43.79
SNRESBO−ETC = 44.13

0.78%

3.7 Thermal emission AETC SNRAETC = 36.79
SNRESBO−ETC = 35.74

2.85%

3.8 Obstruction AETC SNRAETC = 49.28
SNRESBO−ETC = 49.68

0.81%

3.8 Thermal emission AETC SNRAETC = 36.02
SNRESBO−ETC = 35.99

0.08%

3.10a) Imager quantum
efficiency AETC SNRAETC = 29.94

SNRESBO−ETC = 30.17
0.77%

3.10a) Imager read
out noise AETC SNRAETC = 51.14

SNRESBO−ETC = 51.08
0.12%

3.10a) Imager dark current Manual
Calculation

SNRAETC = 53.48
SNRESBO−ETC = 53.84

0.67%

63

E. Verification Results

Table E.1 continued from previous page
Requirement Method Result Deviation

3.10a) Imager photometric
aperture size

Manual
Calculation

rphot = 7.17 pixels
rphot,ESBO−ETC = 7.18 pixels

0.14%

3.10a) Imager photometric
aperture shape ESBO-ETC SNRcircular = 55.11

SNRsquare = 55.62
-

3.10a)
Imager photometric
aperture contained
pixels

ESBO-ETC SNREE = 54.76
SNRfixed = 54.76

0.00%

3.10a) Imager: centroid
shift ESBO-ETC

SNRcenter = 14.59
SNRedge = 13.13
Result is symmetric

-

3.10b) Heterodyne SITE texp,SITE = 1362.0 s
texp,ESBO−ETC = 1362.4 s

0.03%

3.10b) Heterodyne mapping SITE texp,SITE = 448.2 s
texp,ESBO−ETC = 448.3 s

0.02%

4.1a) SNR AETC SNRAETC = 11.67
SNRESBO−ETC = 11.45

1.86%

4.1b) Exposure Time ESBO-ETC
texp,initial = 0.1 s
glsSNRESBO−ETC = 11.45
texp,ESBO−ETC = 0.1 s

0.00%

4.1c) Sensitivity ESBO-ETC
SNRinitial = 5.00
Sensitivity = 10.99 mag
SNRESBO−ETC = 5.00

0.00%

5.1 Jitter Airy Manual
Calculation

rphot,jit = 6.95 pixels
rphot,,jit,ESBO−ETC = 7.00 pixels

0.72%

5.1 Jitter GriddedPSF ESBO-ETC rphot,jit,airy = 12.40 pixels
rphot,jit,FITS = 12.38 pixels

0.16%

5.2a) Airy PSF AETC See 4.1a) -

5.2b) Zemax PSF Zemax rphot = 0.97 pixels
rphot,ESBO−ETC = 0.95 pixels

2.06%

5.2c) FITS PSF ESBO-ETC rphot,airy = 7.18 pixels
rphot,FITS = 6.89 pixels

4.04%

- Overall AETC See 4.1a) -

Table E.1.: All verification cases are listed with their corresponding requirement number[5], a
short description of the requirement, the used verification method and the results
of the verification.

64

F. Science Case Configuration Files

The configuration files used in the science cases as described in chapter 6 are listed below.
The required input files are delivered with this thesis.

F.1. FORECAST Configuration File

Listing 1 shows the configuration file used for the simulation of an observation of Pleione with
SOFIA FORECAST as described in section 6.1.

1 <root>
2 <common>
3 <wl_min val="1.71 um"/>
4 <wl_max val="37.71 um"/>
5 <wl_delta val="10 nm"/>
6 <d_aperture val="2.5 m"/>
7 <psf type="Airy" osf="10"/>
8 <output path="output" format="fits"/>
9 <snr val="4"/>

10 </common>
11

12 <astroscene>
13 <target type="BlackBodyTarget" temp="12106 K" mag="5.19 mag" band="N"

comment="Pleione"/>↪→

14 <optical_component type="CosmicBackground" temp="2.725 K"
comment="Cosmic Background"/>↪→

15 <optical_component type="ATRAN" altitude="41000 ft" wl_min="15.71 um"
wl_max="23.71 um" latitude="39 degree" water_vapor="7.3 um"
n_layers="2" zenith_angle="60 degree" resolution="0" temp="240
K"/>

↪→

↪→

↪→

16 </astroscene>
17

18 <common_optics>
19 <optical_component type="Mirror" reflectance="0.965" temp="240 K"

comment="M1"/>↪→

20 <optical_component type="Mirror" reflectance="0.965" temp="240 K"
comment="M2"/>↪→

21 <optical_component type="Mirror" reflectance="0.965" temp="240 K"
comment="M3"/>↪→

65

F. Science Case Configuration Files

22 </common_optics>
23

24 <instrument>
25 <optical_component type="Lens" transmittance="0.88" temp="290 K"

comment="Dewar Window"/>↪→

26 <optical_component type="Mirror" reflectance="0.97" temp="77 K"
comment="Collimator"/>↪→

27 <optical_component type="Mirror" reflectance="0.97" temp="4 K"
comment="Dichroic Mirror"/>↪→

28 <optical_component type="Filter"
transmittance="data_sofia/filter_FOR_F197.csv" temp="4 K"
comment="Filter Wheel FOR_F197"/>

↪→

↪→

29 <optical_component type="Mirror" reflectance="0.97" temp="4 K"
comment="Camera Mirror"/>↪→

30 <optical_component type="Mirror" reflectance="0.97" temp="4 K"
comment="Camera Mirror"/>↪→

31 <sensor type="Imager" comment="SWC">
32 <f_number val="5.5"/>
33 <pixel_geometry val="256, 256 pix"/>
34 <center_offset val="0.0, 0.0 pix"/>
35 <pixel>
36 <quantum_efficiency val="data_sofia/detective_QE.csv"/>
37 <pixel_size val="50 um"/>
38 <dark_current val="1.07 electron / (pix * s)"/>
39 <sigma_read_out val="0.004 electron(1/2) / pix"/>
40 <well_capacity val="1.6e+7 electron"/>
41 </pixel>
42 <photometric_aperture>
43 <shape val="circle"/>
44 <aperture_size val="7 pix"/>
45 </photometric_aperture>
46 </sensor>
47 </instrument>
48 </root>

1.: Configuration file used for the simulation of a SOFIA FORECAST observation

66

F.2. HIFI Configuration File

F.2. HIFI Configuration File

Listing 2 shows the configuration file used for the simulation of an observation of the HCL+

towards W31C with Herschel HIFI as described in section 6.2.

1 <root>
2 <common>
3 <wl_min val="1446 GHz"/>
4 <wl_max val="1437 GHz"/>
5 <res val="0.23 km/s"/>
6 <d_aperture val="3.5 m"/>
7 <psf type="Airy" osf="10"/>
8 <output path="output" format="fits"/>
9 <snr val="42.7"/>

10 </common>
11

12 <astroscene>
13 <target type="BlackBodyTarget" temp="31.6 K"/>
14 <optical_component type="Filter"

transmittance="data_w31/hcl_absorption.csv" comment="HCL
Absorption"/>

↪→

↪→

15 <optical_component type="CosmicBackground" temp="2.725 K"
comment="Cosmic Background"/>↪→

16 <optical_component type="CosmicBackground" temp="274 K"
comment="Zodical Light"/>↪→

17 <optical_component type="CosmicBackground" temp="20 K"
comment="Galactic Cirrus"/>↪→

18 </astroscene>
19

20 <common_optics>
21 <optical_component type="Mirror" reflectance="0.95" temp="88 K"

comment="M1"/>↪→

22 <optical_component type="Mirror" reflectance="0.95" temp="84 K"
comment="M2"/>↪→

23 </common_optics>
24

25 <instrument>
26 <sensor type="Heterodyne">
27 <aperture_efficiency val="0.6"/>
28 <main_beam_efficiency val="0.64266"/>
29 <receiver_temp val="1050 K"/>
30 <eta_fss val="0.96"/>
31 <lambda_line val="1444.2 GHz"/>

67

F. Science Case Configuration Files

32 <lambda_local_oscillator val="1441.5 GHz"/>
33 <kappa val="1"/>
34 </sensor>
35 </instrument>
36 </root>

2.: Configuration file used for the simulation of a Herschel HIFI observation

68

F.3. ESBO Configuration File

F.3. ESBO Configuration File

Listing 3 shows the configuration file used for the simulation of an observation of the HCL+

towards W31C with ESBO as described in section 6.2.

1 <root>
2 <common>
3 <wl_min val="1446 GHz"/>
4 <wl_max val="1437 GHz"/>
5 <res val="0.23 km/s"/>
6 <d_aperture val="5 m"/>
7 <psf type="Airy" osf="10"/>
8 <output path="output" format="fits"/>
9 <snr val="42.7"/>

10 </common>
11

12 <astroscene>
13 <target type="BlackBodyTarget" temp="31.6 K"/>
14 <optical_component type="Filter"

transmittance="data_w31/hcl_absorption.csv" comment="HCL
Absorption"/>

↪→

↪→

15 <optical_component type="CosmicBackground" temp="2.725 K"
comment="Cosmic Background"/>↪→

16 <optical_component type="CosmicBackground" temp="274 K"
comment="Zodical Light"/>↪→

17 <optical_component type="CosmicBackground" temp="20 K"
comment="Galactic Cirrus"/>↪→

18 <optical_component type="Atmosphere"
transmittance="data_w31/transmittance_atmosphere_atran.csv"
temp="265 K"/>

↪→

↪→

19 </astroscene>
20

21 <common_optics>
22 <optical_component type="Mirror" reflectance="0.95" temp="-15

Celsius" obstruction="0.004" obstructor_temp="-20 Celsius"
obstructor_emissivity="0.05" comment="M1"/>

↪→

↪→

23 <optical_component type="Mirror" reflectance="0.95" temp="-20
Celsius" comment="M2"/>↪→

24 <optical_component type="Mirror" reflectance="0.95" temp="-20
Celsius" comment="M3"/>↪→

25 <optical_component type="Mirror" reflectance="0.95" temp="-20
Celsius" comment="M4"/>↪→

69

F. Science Case Configuration Files

26 <optical_component type="Mirror" reflectance="0.95" temp="-20
Celsius" comment="M5"/>↪→

27 </common_optics>
28

29 <instrument>
30 <sensor type="Heterodyne">
31 <aperture_efficiency val="0.55"/>
32 <main_beam_efficiency val="0.67"/>
33 <receiver_temp val="1000 K"/>
34 <eta_fss val="0.97"/>
35 <lambda_line val="1444.2 GHz"/>
36 <lambda_local_oscillator val="1441.5 GHz"/>
37 <kappa val="1"/>
38 </sensor>
39 </instrument>
40 </root>

3.: Configuration file used for the simulation of a ESBO simulation

70

Bibliography

[1] Maier, P. et al. Towards a European Stratospheric Balloon Observatory: the ESBO de-
sign study. In: Ground-based and Airborne Telescopes VII. Ed. by Marshall, H. K.;
Spyromilio, J. Vol. 10700. International Society for Optics and Photonics. SPIE, 2018,
pp. 1470–1481. doi: 10.1117/12.2319248.

[2] Gehrz, R. D. et al. Status of the Stratospheric Observatory for Infrared Astronomy
(SOFIA). In: Advances in Space Research 48.6 (Feb. 5, 2011), pp. 1004–1016. issn:
0273-1177. doi: 10.1016/j.asr.2011.05.023.

[3] Lemke, D. et al. Balloon-borne telescope THISBE 1: Technology, results, experience. In:
NASA STI/Recon Technical Report N 77 (Nov. 1976), p. 30046.

[4] Maier, P. Partners – ESBO-DS. University of Stuttgart. 2020. url: https://esbo-
ds.irs.uni-stuttgart.de/wordpress/index.php/partners/ (visited on July 9,
2020).

[5] Klass, L. Software Requirements Specifications. ESBO Exposure Time Calculator. Tech.
rep. IRS, Mar. 27, 2020.

[6] Burke, B.; Graham-Smith, F. An Introduction to Radio Astronomy. 4th ed. Cambridge
University Press, 2019. isbn: 978-1-107-18941-6.

[7] Kazmi, H.; Meixner, M. SOFIA Observer’s Handbook for Cycle 9. Version 9.1.0. USRA.
Apr. 15, 2020. url: https : / / www . sofia . usra . edu / science / proposing - and -
observing/observers-handbook-cycle-9 (visited on Aug. 29, 2020).

[8] Corle, T. R.; Kino, G. S. Chapter 1 - Introduction. In: Confocal Scanning Optical Mi-
croscopy and Related Imaging Systems. Burlington: Academic Press, 1996, pp. 1–66.
isbn: 978-0-12-408750-7. doi: https://doi.org/10.1016/B978-012408750-7/50009-
4.

[9] Neumann; Bauer; Wolfersdorf. Wärmestrahlung. Manuskript zur Vorlesung. 2014.

[10] Hasan, H.; Burrows, C. J. Telescope Image Modeling (TIM). In: Publications of the
Astronomical Society of the Pacific 107 (Mar. 1995), p. 289. doi: 10.1086/133552.

[11] Littlefair, S. Observational Techniques for Astronomers. University of Sheffield. url:
http://slittlefair.staff.shef.ac.uk/teaching/phy217/lectures/instruments/
L14/index.html (visited on Aug. 27, 2020).

[12] Howell, S. B. Two-Dimensional Aperture Photometry: Signal-to-Noise Ratio of Point-
Source Observations and Optimal Data-Extraction Techniques. In: Publications of the
Astronomical Society of the Pacific 101 (June 1989), p. 616. doi: 10.1086/132477.

[13] Klein, U. Radio astronomy: tools, applications and impacts. Course astro 841. Argelander-
Institut für Astronomie, Bonn. Sept. 2011. url: https://hera.ph1.uni-koeln.de/
ftpspace/simonr/Pablo/Radioastronomy.pdf (visited on Aug. 29, 2020).

71

https://doi.org/10.1117/12.2319248
https://doi.org/10.1016/j.asr.2011.05.023
https://esbo-ds.irs.uni-stuttgart.de/wordpress/index.php/partners/
https://esbo-ds.irs.uni-stuttgart.de/wordpress/index.php/partners/
https://www.sofia.usra.edu/science/proposing-and-observing/observers-handbook-cycle-9
https://www.sofia.usra.edu/science/proposing-and-observing/observers-handbook-cycle-9
https://doi.org/https://doi.org/10.1016/B978-012408750-7/50009-4
https://doi.org/https://doi.org/10.1016/B978-012408750-7/50009-4
https://doi.org/10.1086/133552
http://slittlefair.staff.shef.ac.uk/teaching/phy217/lectures/instruments/L14/index.html
http://slittlefair.staff.shef.ac.uk/teaching/phy217/lectures/instruments/L14/index.html
https://doi.org/10.1086/132477
https://hera.ph1.uni-koeln.de/ftpspace/simonr/Pablo/Radioastronomy.pdf
https://hera.ph1.uni-koeln.de/ftpspace/simonr/Pablo/Radioastronomy.pdf

Bibliography

[14] Comito, C.; Schilke, P. Reconstructing reality: Strategies for sideband deconvolution. In:
Astronomy & Astrophysics 395.1 (Oct. 2002), pp. 357–371. doi: 10.1051/0004-6361:
20021277.

[15] Teyssier, D. et al. The Heterodyne Instrument for the Far Infrared (HIFI) Handbook.
Version 1.2. ESA. Herschel Science Centre, Dec. 18, 2017.

[16] Johannes Ernesti, P. K. Python 3. Rheinwerk Verlag GmbH, Sept. 1, 2020. isbn:
3836279266.

[17] Meyer, B. Object-oriented software construction. Upper Saddle River, N.J: Prentice Hall
PTR, 1997. isbn: 9780136291558.

[18] Gamma, E. et al. Design Patterns. Elements of Reusable Object-Oriented Software.
MITP Verlags GmbH, Jan. 26, 2015. 480 pp. isbn: 3826697006.

[19] Klass, L. Software Verification. ESBO Exposure Time Calculator. Tech. rep. IRS,
July 23, 2020.

[20] Uslenghi, M.; Falomo, R.; Fantinel, D. AETC: a powerful web tool to simulate astronom-
ical images. In:Modeling, Systems Engineering, and Project Management for Astronomy
VI. Ed. by Angeli, G. Z.; Dierickx, P. SPIE, Aug. 2016. doi: 10.1117/12.2233621.

[21] Krabbe, A. SOFIA telescope. In: Airborne Telescope Systems. Ed. by Melugin, R. K.;
Roeser, H.-P. SPIE, June 2000. doi: 10.1117/12.389103.

[22] Herter, T. L. et al. FORCAST: A Mid-Infrared Camera for SOFIA. In: Journal
of Astronomical Instrumentation 07.04 (Dec. 2018), p. 1840005. doi: 10 . 1142 /
s2251171718400056.

[23] White, T. R. et al. Beyond the Kepler/K2 bright limit: variability in the seven brightest
members of the Pleiades. In: Monthly Notices of the Royal Astronomical Society, 471,
p.2882-2901 (2017) (Aug. 24, 2017). doi: 10.1093/mnras/stx1050.

[24] Fixsen, D. J. The Temperature of the Cosmic Microwave Background. In: The Astrophys-
ical Journal 707.2 (Nov. 10, 2009), pp. 916–920. doi: 10.1088/0004-637X/707/2/916.

[25] Adams, J. D. et al. FORCAST: a first light facility instrument for SOFIA. In: Ground-
based and Airborne Instrumentation for Astronomy III. Ed. by McLean, I. S.; Ramsay,
S. K.; Takami, H. SPIE, July 2010. doi: 10.1117/12.857049.

[26] Klass, L.; Maier, P. Code for the Simulation of SOFIA/FORECAST in "ESBO-ETC:
The modular open-source Exposure Time Calculator". Version v1. Oct. 2020. doi: 10.
24433/CO.9752252.v1.

[27] Gerin, M. et al. Probing InterStellar Molecules with Absorption line Studies (PRISMAS).
In: Mar. 25, 2008.

[28] Luca, M. D. et al. Herschel / HIFI Discovery of HCl+ in the Interstellar Medium. In: The
Astrophysical Journal 751.2 (May 2012), p. L37. doi: 10.1088/2041-8205/751/2/l37.

[29] Teyssier, D. Quick-Start Guide to Herschel-HIFI. Version 2.1. ESA. Herschel Science
Centre, Jan. 16, 2018.

[30] Exter, K. et al. The Photodetector Array Camera and Spectrometer (PACS) Handbook.
Version 4.0.1. ESA. Herschel Science Centre, Apr. 30, 2019.

72

https://doi.org/10.1051/0004-6361:20021277
https://doi.org/10.1051/0004-6361:20021277
https://doi.org/10.1117/12.2233621
https://doi.org/10.1117/12.389103
https://doi.org/10.1142/s2251171718400056
https://doi.org/10.1142/s2251171718400056
https://doi.org/10.1093/mnras/stx1050
https://doi.org/10.1088/0004-637X/707/2/916
https://doi.org/10.1117/12.857049
https://doi.org/10.24433/CO.9752252.v1
https://doi.org/10.24433/CO.9752252.v1
https://doi.org/10.1088/2041-8205/751/2/l37

[31] Klass, L.; Maier, P. Code for the Simulation of Herschel/HIFI in "ESBO-ETC: The
modular open-source Exposure Time Calculator". Version v1. Oct. 2020. doi: 10.24433/
CO.3100674.v1.

[32] Reach, W. T. et al. The mid-infrared spectrum of the zodiacal and exozodiacal light. In:
Icarus 164.2 (Aug. 2003), pp. 384–403. doi: 10.1016/s0019-1035(03)00133-7.

[33] Leinert, C. et al. The 1997 reference of diffuse night sky brightness. In: Astronomy
and Astrophysics Supplement Series 127.1 (Jan. 1998), pp. 1–99. doi: 10.1051/aas:
1998105.

[34] Sein, E. et al. A 3.5m diameter Sic telescope for Herschel mission. In: IR Space Tele-
scopes and Instruments. Ed. by Mather, J. C. Vol. 4850. International Society for Optics
and Photonics. SPIE, 2003, pp. 606–618. doi: 10.1117/12.461804.

[35] Standard Atmosphere. Tech. rep. ISO 2533:1975. ISO - International Organization for
Standardization, May 15, 1975. 108 pp.

[36] Maier, P. STUDIO Thermal Control System. Tech. rep. Version 1.00. University of
Stuttgart, Oct. 17, 2019.

[37] Klass, L.; Maier, P. Code for the Simulation of ESBO/GREAT in "ESBO-ETC: The
modular open-source Exposure Time Calculator". Version v1. Oct. 2020. doi: 10.24433/
CO.9321102.v1.

[38] Zombeck, M. V. Handbook of Space Astronomy and Astrophysics. 3rd ed. Cambridge
University Press, 2006. doi: 10.1017/CBO9780511536359.

73

https://doi.org/10.24433/CO.3100674.v1
https://doi.org/10.24433/CO.3100674.v1
https://doi.org/10.1016/s0019-1035(03)00133-7
https://doi.org/10.1051/aas:1998105
https://doi.org/10.1051/aas:1998105
https://doi.org/10.1117/12.461804
https://doi.org/10.24433/CO.9321102.v1
https://doi.org/10.24433/CO.9321102.v1
https://doi.org/10.1017/CBO9780511536359

	Abstract
	Zusammenfassung
	Acronyms
	Symbols
	Introduction
	ESBO
	Exposure Time Calculator & Requirements
	Thesis Overview

	Theory
	Fundamentals
	Radiation Sources
	Radiative Transfer
	Radiation Detection

	Preparatory Work
	Python
	Project Structure
	Tools
	Python Packages

	Implementation
	Software Architecture
	Numerical Approaches
	Configuration File
	Output
	Documentation
	CI/CD Pipeline

	Software Verification & Validation
	Verification Methods
	Verification Results

	Analysis of two Scientific Applications
	SOFIA FORECAST - Influence of Mirror Coatings on Integration Time
	ESBO Heterodyne Instrument - HCl^(+) absorption towards W31C

	Conclusion
	Future Upgrades & Extensions

	Appendix Standard photometric systems
	Appendix Derivation of ExoSim
	Appendix Approximation Error for the Obstructed Extended Source
	Appendix Class Diagram
	Appendix Verification Results
	Appendix Science Case Configuration Files
	FORECAST Configuration File
	HIFI Configuration File
	ESBO Configuration File

	Bibliography

